• 제목/요약/키워드: Subway Stations

검색결과 393건 처리시간 0.026초

지하철역사의 공기질 감시 및 제어를 위한 유무선 네트워크의 성능평가에 관한 연구 (Performance Evaluation of Wireless and Wired Networks for Monitoring and Control of Indoor Air Quality(IAQ) in Subway Stations)

  • 최기흥
    • 한국안전학회지
    • /
    • 제27권1호
    • /
    • pp.1-6
    • /
    • 2012
  • 복잡한 지하철 역사에서 공기질은 승객의 안전과 건강을 좌우하는 중요한 요소이다. $CO_2$, VOCs먼지, 미생물 등의 농도는 역사의 여러 지점에서뿐만 아니라 원격지점에서도 감시 및 제어가 가능해야 하기 때문에 유무선 네트워크를 사용한 웹기반 감시 및 제어가 필요하다. 가상디바이스 네트워크(VDN) 개념에 근거한 원격 무선센서 네트워크와 디바이스 네트워크(LonWorks)를 IP 네트워크에 연동시키면 매우 강력한 분산 감시 및 제어 성능을 제공한다. 본 연구에서는 지하철역사내 공기질 감시 및 제어를 위한 유무선 네트워크의 성능평가를 실시하였다. 특히 유무선 네트워크의 데이터 전송과 지연특성을 평가하고 승객의 안전과 건강을 위한 핵심요소를 확인하였다.

서울지역 지하철역의 공기 중 오염인자의 노선별 분포 특성 (Distribution Characteristics between Line and Line for Indoor Air Pollutant Factors at Subway Stations in Seoul Area)

  • 김민영;라승훈;신도철;한규문;최금숙;정일현
    • 한국환경보건학회지
    • /
    • 제24권2호
    • /
    • pp.134-144
    • /
    • 1998
  • A comprehensive air quality monitoring was carried out to investigate the criteria concentration of air pollutant in indoor of subway stations of Seoul City. The samples were collected twice per year (the first and the second half of the year) at each sampling point from February to September in 1997. Sampling point of subway stations was ticket office and platform. The measurement of indoor air pollutants such as sulfur dioxide(SO$_2$), nitrogen dioxide(NO$_2$), carbon monoxide(CO), carbon dioxide(CO$_2$), total suspended particulate(TSP) was performed to determine the indoor air quality. Heavy metals(Pb, Cd, Cu, Cr, As, Hg) were also measured together with those air pollutants. The annual average concentration of CO$_2$ and TSP in subway stations were relatively high while those of heavy metals were within 10% of environmental recommended standard concentration in all stations. As results of regression analysis between line and line of air factors, the concentrations of CO, CO$_2$, TSP, Pb, Cd, Cr and Cu were highly correlated, but those of $SO_2, NO_2$ and Hg were not correlated. As results of regression analysis between ticket office and platform, the concentrations of heavy metals such as Cr and Cu were highly correlated. Results of oneway analysis of variance between the first and the second half of the year air factors also indicated that CO, CO$_2$, Cd, Cu, Hg were significant($\alpha$=0.01), respectively. The average contration of total suspended particulate(TSP) in subway line No. 1 was shown high concentration(200 $\mu g/m^3\cdot$ day) level.

  • PDF

부산지역 지하역사의 최근 3년간(2015~2017년) CO, CO2, NO2 농도의 특성 (Characteristics of CO, CO2, and NO2 Concentrations at Subway Stations in Busan for 3 Years (2015~2017))

  • 전병일
    • 한국환경과학회지
    • /
    • 제28권7호
    • /
    • pp.595-606
    • /
    • 2019
  • This research investigated the characteristics of CO, $CO_2$, and $NO_2$ concentrations at main subway stations in Busan. The annual mean CO concentrations at the Suyeong and Nampo stations were 0.75 ppm and 0.48 ppm, respectively. Annual $CO_2$ concentration at the Seomyeon 1- platform was 649 ppm. The $NO_2$ concentrations at the Seomyeon 2- waiting room and the Yeonsan station were 0.048 ppm and 0.037 ppm, respectively. CO concentration was highest at two times of the day, and was proportional to the number of passengers commuting to and from work. The CO and $CO_2$ concentrations were highest in winter, but $NO_2$ concentration was highest in spring. CO and $CO_2$ concentrations were highest on Saturday and lowest on Sunday. The correlation of CO and $NO_2$ concentrations measured at the subway stations with those at the ambient air quality station were highest at the Seomyeon 1 and 2- waiting room and Jeonpodong. The correlation was lowest at the Yeonsan and Yeonsandong station. The number of days when $CO_2$ concentration exceeded 700 ppm over the last three years at the Seomyeon 1- platform was 174. The findings of this research are expected to deepen understanding of the fine particle characteristics at subway stations in Busan and be useful for developing a strategy for controlling urban indoor air quality.

지하철 역사 공기질 모니터링 시스템의 구현 (Implementation of Indoor Air Quality Monitoring System for Subway Stations)

  • 김규식
    • 전자공학회논문지
    • /
    • 제50권6호
    • /
    • pp.294-301
    • /
    • 2013
  • 지하철 역사의 미세먼지농도는 지하철 승객의 건강을 위해서 항상 모니터링되고 관리되어야 한다. 서울메트로와 서울도시철도공사는 몇몇 공기 오염물질을 주기적으로 측정하고 있다. 본 논문에서는 지하철 역사의 $PM_{10}$ 농도를 연속해서 측정하기 위해, 선형회귀분석법을 이용하여 저가의 광산란식 미세먼지측정기의 성능을 향상시키고자 하였다. 이와 더불어, 지하철 역사의 대합실, 승강장, 터널, 외기의 $PM_{10}$, $CO_2$. 습도, 온도 등을 측정하고 기록하기 위해 CDMA M2M 기법을 적용한 무선통신 모니터링 시스템을 구축하였다.

지하철 역사 지하수를 이용한 에어와셔에 관한 연구 (Study on Air Washer using Underground Water in the Subway Stations)

  • 김동규;김회률;정용현;김종열;금종수
    • 수산해양교육연구
    • /
    • 제22권4호
    • /
    • pp.604-610
    • /
    • 2010
  • Busan subway transportation system has been established a key role in the society last 20 years. However many people are suffering from hot and humid environment at subway station and platform due to deteriorated ventilation system as well as insufficient air conditioning system in existing stations and platforms. As a result, these systems require revitalization. There is about 5400tons of low temperature underground water is generated from subway stations every day. By using this method and air washer we are trying to lower the temperature. Air washer is commonly used for removing humidity but in this experiment it will be used as air precooling. This research offers result of experiment using air washer system to lower the temperature in large spaces like subway station. The experiment result has shown when L/G was the same, at condition which water spray temperature at $18^{\circ}C$ resulting inlet and outlet temperature difference larger. Also, in the same water spray temperature conditions, larger L/G condition showed a greater temperature difference. LCC evaluation of both system were shown that air washer system of using underground water will save 53% of the initial cost than refrigeration system, and save 75% of operating cost.

Characterization of Summertime Aerosol Particles Collected at Subway Stations in Seoul, Korea Using Low-Z Particle Electron Probe X-ray Microanalysis

  • Kim, Bo-Wha;Jung, Hae-Jin;Song, Young-Chul;Lee, Mi-Jung;Kim, Hye-Kyeong;Kim, Jo-Chun;Sohn, Jong-Ryeul;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • 제4권2호
    • /
    • pp.97-105
    • /
    • 2010
  • A quantitative single particle analytical technique, denoted low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize particulate matters collected at two underground subway stations, Jegidong and Yangje stations, in Seoul, Korea. To clearly identify the source of the indoor aerosols in the subway stations, four sets of samples were collected at four different locations within the subway stations: in the tunnel; at the platform; near the ticket office; nearby outdoors. Aerosol samples collected on stages 2 and 3 ($D_p$: $10-2.5\;{\mu}m$ and $2.5-1.0\;{\mu}m$, respectively) in a 3-stage Dekati $PM_{10}$ impactor were investigated. Samples were collected during summertime in 2009. The major chemical species observed in the subway particle samples were Fe-containing, carbonaceous, and soil-derived particles, and secondary aerosols such as nitrates and sulfates. Among them, Fe-containing particles were the most popular. The tunnel samples contained 85-88% of Fe-containing particles, with the abundance of Fe-containing particles decreasing as the distances of sampling locations from the tunnel increased. The Fe-containing subway particles were generated mainly from mechanical wear and friction processes at rail-wheel-brake interfaces. Carbonaceous, soil-derived, and secondary nitrate and/or sulfate particles observed in the underground subway particles likely flowed in from the outdoor environment by human activities and the air-exchange between the subway system and the outdoors. In addition, since the platform screen doors (PSDs) limit air-mixing between the tunnel and the platform, samples collected at the platform at the Yangjae station (with PSDs) showed a marked decrease in the relative abundances of Fe-containing particles compared to the Jegidong station (without PSDs).

The application of network theory to subway transportation in Seoul, Korea

  • Kim, Chae-Bong;Kim, Hak-Soo;Kim, Seong-in
    • 경영과학
    • /
    • 제14권2호
    • /
    • pp.81-90
    • /
    • 1997
  • Network approach is used to find the shortest paths and transportation time between the subway stations in Seoul, Korea. Because of transfer stations, we reconstruct the subway network to compute the shortest routes and corresponding transportation times. The reconstructed network is useful to obtain desired information because it can handle the transfer time between tracks. Time and route information about the subway system is obtained and it will be displayed in the subway guide board at each station. Then, all passengers can have the information of shortest route to a destination and corresponding transportation time.

  • PDF

서울시 지하철 역사 출입구의 보행환경 개선방안 (Reorganization on the Subway Entrance System in Seoul for Better Pedestrian Environment)

  • 이창;이동훈;이주아
    • KIEAE Journal
    • /
    • 제15권4호
    • /
    • pp.53-60
    • /
    • 2015
  • Purpose: Subway in Seoul, Korea is an important urban mass transportation system as it carries more than 4 million people a day. To support this important mission, subway entrances were designed and installed to maximize accessibility to the stations. However, a uniform plan by the national government guided quantity and layout of the subway entrances. Therefore, the plan did not consider unique characteristics of each station area and reorganization of the subway entrance system is required to improve pedestrian environment. Method: This study grouped the subway entrances into specific patterns to propose reorganizing schemes. The authors conducted field surveys, examined case studies and proposed an entrance reorganizing plan for each type. Result: The study recommends subway entrances be installed inside adjacent building when large commercial or office complexes are nearby. The authors proposed installing a bridge connecting the stations and adjacent buildings for elevated entrances. This would be only possible when there are commercial or office facilities nearby with enough floor space. The study summarizes the pros and cons of each solution. To translate our proposals into realities, various incentives should be given to building or land owners. This study made suggestions as to which kinds of incentives exist and be effective in a range of situations.

지하철 역내 가스 검출 원격 모니터링 시스템 구현 (Development of a remote monitoring system for gas detection at the subway station)

  • 박용만;김희식;김규식;이문규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.439-441
    • /
    • 2007
  • The seoul metropolitan subway has installed 8 lines and about 500 stations to transport 5 million passengers everyday. The underground air pollution level in the subway stations is very severe status, which is very harmful to the commutators and its personals. Although subway roles as such a massive and huge transportation system, the subway doesn't adapt yet any real-time air monitoring system. They have only some hand-held type detector equipments for monitoring air pollution. Therefore subway passengers are exposed to the harmful air pollution environment. The most harmful environmental parameters among the air pollution are known as the dust and sound noise dB level in the subway station. Because the dust is consisted of very small particles, we can't see them easily in dark condition on the platform, but it is very harmful. The monitoring system for air pollution is developed using embedded system attached with 6 different environmental sensors. This system monitors air pollution of dust sound noise, gas, temperature, humidity, inflammable gas, toxic gas in the subway ?station. The sensor unit of the ARM-CPU board and sensor transmits real time environmental data to the main server using Zigbee wireless communication module and TCP/IP network. The main control server receives and displays the real-time environmental data, and it send alarms to the personals when high level value.

  • PDF

지하철역사내 승객보행흐름 분석모형 - 교통카드자료를 활용하여 - (An Analysis Model on Passenger Pedestrian Flow within Subway Stations - Using Smart Card Data -)

  • 이미영;신성일;김부원
    • 한국ITS학회 논문지
    • /
    • 제17권6호
    • /
    • pp.14-24
    • /
    • 2018
  • 교통카드를 이용하는 승객의 지하철역사내에서 보행이동은 직승직하, 노선환승, 역사환승 3가지로 구분된다. 직승직하는 단말기노선과 열차노선이 동일한 상황에서 나타나는 통행을 의미한다. 직승은 출발역에서 직하는 도착역에서 각각 나타난다. 노선환승은 승객이 하차 및 승차한 열차노선이 다른 상황에서 발생한다. 노선환승은 출발역과 도착역이 아닌 중간역의 환승보행통행이다. 역사환승은 단말기노선과 열차노선이 다른 경우 나타난다. 역사환승은 출발역에서 출발환승과 도착역에서 도착환승으로 나타난다. 수도권 교통카드는 출발역 및 도착역 단말기노선번호가 기록되나 열차노선정보가 존재하지 않는다. 따라서 지하철역사를 보행하는 승객의 전체흐름을 분석하기 위해서 카드자료가 활용되지 못하고 있다. 본 연구는 교통카드자료의 제한된 정보를 활용하여 지하철역사내 승객의 보행이동 분석모형을 제안한다. 이를 위해 출발역과 도착역을 연결하는 경로선택모형을 구축하여 열차노선을 분석하는 개념을 적용한다. 수도권지하철을 대상으로 사례연구를 시행하여 보행통행을 분석한다.