• Title/Summary/Keyword: Subway Cabin

Search Result 38, Processing Time 0.023 seconds

Research Study on Indoor Air Quality (IAQ) inside of the Subway Cabin in Seoul Metropolitan City (지하철 전동차 객실 내부 공기질 조사 연구)

  • Lee, Kyoung Bin;Kim, Jin Sik;Bae, Sung Joon;Kim, Shin Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.175-187
    • /
    • 2014
  • The subways play an important part in serious traffic problems. Almost seven million citizens a day are using subways as a means of traffic communication in the Seoul metropolitan city in 2012. However, the subway system is a semi-closed environment, so many serious problems occurred in subway stations and injured passengers' health. Platform screen doors (PSD) are expected to prevent negligent accident such as injury or death from falling and improve the air quality of the subway station. Installation of PSD at stations in Seoul metropolitan subway had been completed in December 2009. Consequently, the underground transportation system became a closed environment, so the air quality has improved the platforms, but it has deteriorated in the tunnels. Especially, the subway cabin has many doors, and the doors are frequently opened and closed. For this reason, the effect of door opening on subway cabin, dust flow inside the subway cabin. In this process, the maintenance work may influence the health of people who work underground, as well as that of subway users (passengers). In this study, we measured air quality inside and outside of the subway cabin line 2 in Seoul, Korea. This study focused on the investigation of Indoor Air Quality (IAQ) and measurement target pollutants are PM10, CO, $CO_2$, $NO_2$, $O_3$. It was found that levels of PM10, $CO_2$, and $NO_2$ inside subway cabin line 2 exceeded the Korea IAQ standard. Concentrations of PM10, $CO_2$, and $NO_2$ inside of the cabin are higher than outside of the cabin (Indoor Outdoor ratio is higher than 1.). Concentrations of CO, $O_3$ inside of the cabin are lower than outside of the cabin (Indoor Outdoor ratio is lower than 1.). There is a high correlation between $CO_2$ and passengers inside of the cabin and PM10 is only the weakest correlation with passengers. Therefore, it is important to find out the emission source of $NO_2$. The results of this study will be useful as fundamental data to study indoor air quality of a subway cabin.

Efficiency Evaluation of Operating Railroad with Subway Cabin Air Purifier (도시철도 객실 공기정화장치(SCAP)의 운행차량 효율평가)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jong-Bum;Cho, Goan-Hyun;NamGoong, Seok;Lee, Joo-Yeol;Kim, Tae-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1303-1308
    • /
    • 2011
  • In the modern society various types of transportation mode are utilized, among them the subway system is the one of the main transportation mode which more than 7.21 million people ride a day. Because of interests on the indoor air quality (IAQ) of underground public facilities, concerns on IAQ of subway system by many people are increasing. There are several approach to improve IAQ of subway station, such as installing platform screen door (PSD), frequent tunnel washing-out, and etc, however there has not been any attempt to improve IAQ of subway cabin inside. Most technologies for removing airborne particulate matters are known to be difficult to adopt on the subway cabin since the problem of maintenance cost. Therefore, the ultimate object of this study is a practical development of cabin air cleaning system which can reduce the concentration of airborne particles and harmful gases at the same time. The subway cabin air purifier (SCAP) was developed for removing particulate matters and gases pollutants inside a cabin. The whole system was designed and the roll-filter device was manufactured based on numerical prediction results. It is expected that SCAP could reduce indoor air pollutants in the subway cabin practically and it can be applied to other part of transportation vehicles.

  • PDF

Study on the Removal of Carbon Dioxide in the Subway Cabin Using Zeolite Type Carbon Dioxide Adsorbent (제올라이트계 이산화탄소 흡착제를 사용한 지하철 객실 내부의 이산화탄소 제거에 관한 연구)

  • Cho, Young-Min;Park, Duck-Shin;Kwon, Soon-Bark;Lee, Ju-Yeol;Hwang, Yun-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • High concentration of carbon dioxide at subway cabin is one of the serious environmental concerns because carbon dioxide causes drowsiness, headache, and nervelessness of passengers. Ministry of Environment set a guideline for indoor carbon dioxide levels in train or subway in 2007. In this study, a carbon dioxide removal system for subway cabin was developed and tested using a test subway cabin. Various types of modified zeolites were used as the adsorbent of carbon dioxide. The tested zeolites were applied to the subway cabin, and showed high potential to lower the indoor $CO_2$ level.

Analysis of basic IAQ management factors in metropolitan subway (수도권 지하철 내부의 IAQ 관리 기초 인자 분석)

  • Cho Young-Min;Park Duckshin;Lee Cheulgyu;Park Byunghyun;Park Eunyoung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1138-1142
    • /
    • 2005
  • The IAQ management in subway cabin is very important for the enhancement of the amenity and health of passengers because the subway carries many passengers in a relatively short time mostly in urban area. However, since the ventilation of most subway cabins are performed by simple opening of doors at each stations, the IAQ management is not easy. In this study, we measured some IAQ factors (temperature, relative humidity, particulate matters, CO, and $CO_2$ concentration) of subway cabin in Seoul area. The results showed that the IAQ of the cabin was relatively acceptable. However, $CO_2$ concentrations were higher than 1,000 ppm in most cases. $CO_2$ concentration was mostly proportional to the number of passengers in cabin. Therefore, new method to relieve the $CO_2$ concentration is urgently required.

  • PDF

Characteristics of In-cabin PM2.5 Concentration in Seoul Metro Line Number 2 in Autumn (서울시 지하철 2호선의 가을철 객실 PM2.5 농도의 특성)

  • Shin, Hyerin;Jung, Hyunhee;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.186-191
    • /
    • 2019
  • Objectives: Subway is one of the most common transportation modes in Seoul, Korea. The objectives of this study were to determine characteristics of in-cabin $PM_{2.5}$ concentration in Seoul Metro Line Number 2 and to identify factors of the $PM_{2.5}$ concentration. Methods: In-cabin $PM_{2.5}$ concentrations in Seoul Metro Line Number 2 were measured using real-time monitors and the factors affecting $PM_{2.5}$ concentration in cabin were observed. Linear regression analysis of in-cabin $PM_{2.5}$ concentration and indoor/outdoor (I/O) ratio were performed. Results: In-cabin $PM_{2.5}$ concentration was associated with the in-cabin $PM_{2.5}$ concentration in previous station. In-cabin $PM_{2.5}$ concentration was correlated with ambient $PM_{2.5}$ concentration and associated with underground station with control of the in-cabin $PM_{2.5}$ concentration in previous station. I/O ratio increased as the number of passengers increased and when passing through the underground station with control of I/O ratio in previous station. Conclusion: In-cabin $PM_{2.5}$ concentration was affected by ambient $PM_{2.5}$ concentration. Therefore, management of in-cabin $PM_{2.5}$ concentrations should be based on outdoor air quality.

A Study on the flame behaviors of light railway vehicle (경량전철 차량화재의 화염거동에 대한 연구)

  • 목재균;김연수;이우동;허남건
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.281-289
    • /
    • 2002
  • This paper is described for the flame behaviors in light railway cabin by numerical simulation code, which can be interpreted the design parameters in terms of suppression the fire propagation and excavation the passengers safely. The results shows that the flame intensity(fire temperature, smoke density) depends on the firing points in cabin and propagates rapidly whole cabin space rather than modern subway cabin due to smaller inner space. The data will be used to how can be get the safety case, which is described on the operating principles for all facilities and logistics against to the light railway firing accidents.

  • PDF

A Study on the Early Response System Subway Cabin Arson Fire (지하철 차량 방화사고 초기대응에 관한 연구)

  • Roh, Sam-Kew;Ham, Eun-Gu;Kim, Si-Gon
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.21-30
    • /
    • 2006
  • Since Daegu subway arson fire disaster in 2003, there have been several copycat crimes such as at Seoul Metro line number seven and Hongkong Chuiwan line cases. Oil and gas were used for fire propagation in most cases as in Daegu case and such fire could be expanded to a whole subway cabin within several minutes. The fire may eventually cause the whole subway system stop. Fire damage can be minimized when fire occurrence and diffusion are blocked by stages or isolated rapidly. This study suggests an effective early response system that separates passengers from fire and a real-time fire extinguishment program by stages. Based on the subway arson case studies, the early response scenario has been structured by three stages, i.e., confirmation of fire and damage, early fire extinguishment, and information dissemination and passengers evacuation.

Vibration Analysis and Mitigable Countermeasures of Semi High-speed Subway Electric Trains (준고속 도시철도의 진동분석 및 저감대책)

  • Park, Ki-Soo;Choi, Yeon-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1014-1023
    • /
    • 2008
  • Subway electric trains need to be faster for accommodation of long distance passengers. The faster run of the existing trains results in deterioration of ride quality due to noise and vibration. To reduce the noise and vibration of the electric train, a running test of the electric train was performed and an ADAMS/Rail model was set up to verify the running test results. The experimental results show that the sources of the cabin noise and vibration basically comes from the irregularity of the railroad track and the deterioration of the connection part between cabin and bogie. Consequently for mitigation of noise and vibration of the electric train, the redesign of the center pivot with softer stiffness and the minimization of rail irregularity are necessary. the frequent maintenance of the train will lead to better comport.

Development of Air Quality Assessment Model for Subway Cabin (도시철도 객실 공기질 평가모델 개발)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Kim, Se-Young;Park, Jae-Hyung;Cho, Goan-Hyun;Yoo, Gun-Jong;Kim, Jung-Su
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.157-160
    • /
    • 2010
  • Management of indoor air quality of underground subway station is an important issue since the limited natural ventilation, limited sunshine incoming, and highly moistured atmosphere. The improvement in IAQ of platform is expected because most stations were installed with platform screen door currently, however, the poor air quality in tunnel might be affecting subway cabin indoor. In this study, we developed the air quality assessment model based on computational fluid dynamics. The geometry of air ventilation unit, seat, LCD monitors, and passengers were modeled using commercial software (Design Modeler) and fluid pattern and pollutants trajectories were analyzed by using CFX. We predicted the thermal comfort by predicted mean vote (PMV), distribution of CO2 and PM10 concentration. It is expected that this model can be used for the performance test of air cleaners which are under development.

  • PDF

Development of Air Cleaning Roll-Filter for Improving IAQ in Subway (도시철도 객실 공기질 개선을 위한 롤필터 개발연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jong-Bum;NanGoong, Seok;Han, Tae-Woo;Cho, Kwan-Hyun;Kim, Tae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.313-319
    • /
    • 2011
  • In a modern society, various type of transportation modes are utilized, among them the subway system is the one of the main transportation mode which more than 7.21 million people ride a day in Seoul. Due to the increased interests on the indoor air quality (IAQ) of underground facilities, public concerns on IAQ of subway system are increasing also. Platform screen door (PSD) recently installed at the whole stations of Seoul subway and tunnel washing-out appeared to be effective in reducing particulate matters in the platform and tunnel. However there has not been any attempt to improve IAQ of subway cabin inside. Most technologies for removing airborne particulate matters are known to be difficult to adopt on the subway cabin due to the problem of maintenance cost. Therefore, the object of this study is a practical development of cabin air cleaning system which can reduce the concentration of airborne particles and harmful gases at the same time. In this paper, we focused on the development of particle removing system utilizing a roll-filter for increasing operating time of air filter. The prototype of system was designed and manufactured based on the numerical prediction results. For rollfilter device, 5 candidate filter materials were tested in point of particle collection efficiency and pressure drop. It was found that the electrically charged filter material showed the highest performance among them.