• Title/Summary/Keyword: Subunit vaccines

Search Result 37, Processing Time 0.024 seconds

Production of Recombinant Anti-Cancer Vaccines in Plants

  • Lee, Jeong Hwan;Ko, Kisung
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.345-353
    • /
    • 2017
  • Plant expression systems have been developed to produce anti-cancer vaccines. Plants have several advantages as bioreactors for the production of subunit vaccines: they are considered safe, and may be used to produce recombinant proteins at low production cost. However, several technical issues hinder large-scale production of anti-cancer vaccines in plants. The present review covers design strategies to enhance the immunogenicity and therapeutic potency of anti-cancer vaccines, methods to increase vaccine-expressing plant biomass, and challenges facing the production of anti-cancer vaccines in plants. Specifically, the issues such as low expression levels and plant-specific glycosylation are described, along with their potential solutions.

Development of Vaccine Delivery System and Challenges (백신 전달기술 개발 동향과 과제)

  • Jung, Hyung-Il;Kim, Jung-Dong;Kim, Mi-Roo;Dangol, Manita
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.497-506
    • /
    • 2010
  • Vaccine is a protective clinical measure capable of persuading immune system against infectious agents. Vaccine can be categorized as live attenuated and inactivated. Live attenuated vaccines activate immunity similar to natural infection by replicating living organisms whereas inactivated vaccines are either whole cell vaccines, eliciting immune response by killed organisms,or subunit vaccines, stimulating immunity by non-replicating sub cellular parts. The components of vaccine play a critical role in deciding the immune response mediated by the vaccine. The innate immune responds against the antigen component. Adjuvants represent an importantcomponent of vaccine for enhancing the immunogenicity of the antigens. Subunit vaccines with isolated fractions of killed and recombinant antigens are mostly co-administered with adjuvants. The delivery system of the vaccine is another essential component to ensurethat vaccine is delivered to the right target with right dosage form. Furthermore, vaccine delivery system ensures that the desired immune response is achieved by manipulating the optimal interaction of vaccine and adjuvantwith the immune cell. The aforementioned components along with routes of administration of vaccine are the key elements of a successful vaccination procedure. Vaccines can be administered either orally or by parenteral routes. Many groups had made remarkable efforts for the development of new vaccine and delivery system. The emergence of new vaccine delivery system may lead to pursue the immunization goals with better clinical practices.

The BCG vaccine, advantages, and disadvantages of introducing new generation vaccines against Mycobacterium tuberculosis

  • Marzie Mahdizade Ari;Masoumeh Beig;Mohammad Sholeh;Majid Khoshmirsafa
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.3
    • /
    • pp.184-201
    • /
    • 2024
  • Tuberculosis (TB) is consistently ranked among the deadliest diseases worldwide, causing millions of deaths annually. Mycobacterium tuberculosis is the causative agent for this infection. Different antibiotics and vaccines have been discussed as potential treatments and prevention. Currently, there is only one licensed vaccine against TB, Bacillus Calmette-Guérin (BCG). Despite its protective efficacy against TB in children, BCG has failed to protect adults against pulmonary TB, lacks therapeutic value, and can cause complications in immunocompromised individuals. In this review, BCG, the most widely administered vaccine, is discussed, and the newest vaccines available in medicine are discussed. Based on the restrictions that prevent optimal BCG efficacy and the vaccines that are now being tested in various clinical studies, some criteria need to be considered in designing future vaccines.

Oxidized Carbon Nanosphere-Based Subunit Vaccine Delivery System Elicited Robust Th1 and Cytotoxic T Cell Responses

  • Sawutdeechaikul, Pritsana;Cia, Felipe;Bancroft, Gregory J.;Wanichwecharungruang, Supason;Sittplangkoo, Chutamath;Palaga, Tanapat
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.489-499
    • /
    • 2019
  • Subunit vaccines are safer and more stable than live vaccines although they have the disadvantage of eliciting poor immune response. To develop a subunit vaccine, an effective delivery system targeting the key elements of the protective immune response is a prerequisite. In this study, oxidized carbon nanospheres (OCNs) were used as a subunit vaccine delivery system and tuberculosis (TB) was chosen as a model disease. TB is among the deadliest infectious diseases worldwide and an effective vaccine is urgently needed. The ability of OCNs to deliver recombinant Mycobacterium tuberculosis (Mtb) proteins, Ag85B and HspX, into bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs) was investigated. For immunization, OCNs were mixed with the two TB antigens as well as the adjuvant monophosphoryl lipid A (MPL). The protective efficacy was analyzed in vaccinated mice by aerosol Mtb challenge with a virulent strain of Mtb and the bacterial burdens were measured. The results showed that OCNs are highly effective in delivering Mtb proteins into the cytosol of BMDMs and BMDCs. Upon immunization, this vaccine formula induced robust Th1 immune response characterized by cytokine profiles from restimulated splenocytes and specific antibody titer. More importantly, enhanced cytotoxic $CD8^+$ T cell activation was observed. However, it did not reduce the bacteria burden in the lung and spleen from the aerosol Mtb challenge. Taken together, OCNs are highly effective in delivering subunit protein vaccine and induce robust Th1 and $CD8^+$ T cell response. This vaccine delivery system is suitable for application in settings where cell-mediated immune response is needed.

Recent progress in vaccine development targeting pre-clinical human toxoplasmosis

  • Ki-Back Chu;Fu-Shi Quan
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.3
    • /
    • pp.231-239
    • /
    • 2023
  • Toxoplasma gondii is an intracellular parasitic organism affecting all warm-blooded vertebrates. Due to the unavailability of commercialized human T. gondii vaccine, many studies have been reported investigating the protective efficacy of pre-clinical T. gondii vaccines expressing diverse antigens. Careful antigen selection and implementing multifarious immunization strategies could enhance protection against toxoplasmosis in animal models. Although none of the available vaccines could remove the tissue-dwelling parasites from the host organism, findings from these pre-clinical toxoplasmosis vaccine studies highlighted their developmental potential and provided insights into rational vaccine design. We herein explored the progress of T. gondii vaccine development using DNA, protein subunit, and virus-like particle vaccine platforms. Specifically, we summarized the findings from the pre-clinical toxoplasmosis vaccine studies involving T. gondii challenge infection in mice published in the past 5 years.

Recombinant zoster vaccine (Shingrix®): a new option for the prevention of herpes zoster and postherpetic neuralgia

  • Singh, Grisuna;Song, Sejin;Choi, Eunjoo;Lee, Pyung-Bok;Nahm, Francis Sahngun
    • The Korean Journal of Pain
    • /
    • v.33 no.3
    • /
    • pp.201-207
    • /
    • 2020
  • Postherpetic neuralgia (PHN) is a challenging condition for pain management specialists. The prevention of herpes zoster (HZ) and subsequent PHN in individuals aged 50 years and older, via the development of new vaccines, is an ongoing research project. The live zoster vaccine (LZV, Zostavax®) was the first proof of concept that vaccination could prevent HZ, but LZV cannot be used in various immunecompromised patients. This led to the development of a new non-live recombinant zoster vaccine (RZV, Shingrix®). This RZV has shown promising results in many clinical trials, with high reactogenicity and similar systemic adverse effects compared to those of LZV. The National Advisory Committee on Immunization has recommended LZV as a standard vaccine for HZ prevention in adults ≥ 50 years of age, but no studies directly comparing the safety and efficacy of RZV and LZV vaccines have been conducted. This article reviews the brief history, efficacy, and safety of the two vaccines and discusses the advantage of RZV over LZV based on the available literature.

Current progress on development of respiratory syncytial virus vaccine

  • Chang, Jun
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.232-237
    • /
    • 2011
  • Human respiratory syncytial virus (HRSV) is a major cause of upper and lower respiratory tract illness in infants and young children worldwide. Despite its importance as a respiratory pathogen, there is currently no licensed vaccine for prophylaxis of HRSV infection. There are several hurdles complicating the development of a RSV vaccine: 1) incomplete immunity to natural RSV infection leading to frequent re-infection, 2) immature immune system and maternal antibodies of newborn infants who are the primary subject population, and 3) imbalanced Th2-biased immune responses to certain vaccine candidates leading to exacerbated pulmonary disease. After the failure of an initial trial featuring formalin-inactivated virus as a RSV vaccine, more careful and deliberate efforts have been made towards the development of safe and effective RSV vaccines without vaccine-enhanced disease. A wide array of RSV vaccine strategies is being developed, including live-attenuated viruses, protein subunit-based, and vector-based candidates. Though licensed vaccines remain to be developed, our great efforts will lead us to reach the goal of attaining safe and effective RSV vaccines in the near future.

Need for a safe vaccine against respiratory syncytial virus infection

  • Kim, Joo-Young;Chang, Jun
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.9
    • /
    • pp.309-315
    • /
    • 2012
  • Human respiratory syncytial virus (HRSV) is a major cause of severe respiratory tract illnesses in infants and young children worldwide. Despite its importance as a respiratory pathogen, there is currently no licensed vaccine for HRSV. Following failure of the initial trial of formalin-inactivated virus particle vaccine, continuous efforts have been made for the development of safe and efficacious vaccines against HRSV. However, several obstacles persist that delay the development of HRSV vaccine, such as the immature immune system of newborn infants and the possible Th2-biased immune responses leading to subsequent vaccine-enhanced diseases. Many HRSV vaccine strategies are currently being developed and evaluated, including live-attenuated viruses, subunit-based, and vector-based candidates. In this review, the current HRSV vaccines are overviewed and the safety issues regarding asthma and vaccine-induced pathology are discussed.

Evaluation of systemic and mucosal immune responses in mice administered with novel recombinant Salmonella vaccines for avian pathogenic Esherichia coli

  • Oh, In-Gyeong;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.4
    • /
    • pp.199-205
    • /
    • 2013
  • Avian pathogenic Escherichia coli (APEC) is a causative agent for a number of extra intestinal diseases and account for significant losses to the poultry industry. Since protective immunity against APEC is largely directed to virulence antigens, we have individually expressed four different viulence antigens, papA, papG, IutA, and CS31A, using an attenuated Salmonella Typhimurium and a plasmid pBB244. Following oral immunization of mice with combination of two or four of these strains, serum IgG and mucosal IgA responses were elicited against each antigen represented in the mixture. The antigen-specific mucosal IgA responses were significantly higher in the group of mice immunized with the heat-labile Escherichia coli enterotoxin B subunit (LTB) strain than those in the group of mice immunized without the LTB strain. While, there was no significant difference between these two groups in antigen-specific serum IgG responses. The results showed that LTB could act as mucosal immune adjuvant. To assess the nature of immunity, the distribution of antigen-specific IgG isotypes was analyzed. All groups promoted Th1-type immunity as determined by the IgG2a/IgG1 ratio. Thus, our findings provided evidence that immunization with a combination of several vaccine strains is one of the strategies of developing effective vaccines against APEC.

Phase 4, Post-Marketing Safety Surveillance of the MF59-Adjuvanted Influenza Vaccines FLUAD® and VANTAFLU® in South Korean Subjects Aged ≥65 Years

  • Yoo, Byung Wook;Kim, Chang Oh;Izu, Allen;Arora, Ashwani Kumar;Heijnen, Esther
    • Infection and chemotherapy
    • /
    • v.50 no.4
    • /
    • pp.301-310
    • /
    • 2018
  • Backgroud: Influenza vaccination is recommended for adults aged ${\geq}65$ years as they are at high risk of significant morbidity and mortality. This open-label, multicenter, post-marketing surveillance study assessed the safety of the MF59-adjuvanted trivalent inactivated subunit influenza vaccine, which is marketed as $FLUAD^{(R)}$ and $VANTAFLU^{(R)}$, in South Korean subjects aged ${\geq}65$ years. Materials and Methods: Solicited local and systemic adverse events (AEs) were collected from day 1 to 4 of the study. All unsolicited AEs and serious AEs (SAEs) were recorded from day 1 until study termination (day 29). Results: Of the 770 subjects enrolled ($FLUAD^{(R)}$, n = 389; $VANTAFLU^{(R)}$, n = 381), 39% overall experienced any solicited AE. Local AEs were reported by 33% of subjects overall; with the most common events being injection-site pain (30%) and tenderness (27%). Systemic AEs were reported by 19% of subjects overall with the most common events being myalgia (11%) and fatigue (8%). Conclusion: These results show that the MF59-adjuvanted influenza vaccine known as $FLUAD^{(R)}$ or $VANTAFLU^{(R)}$ had acceptable safety profiles in older adults (aged ${\geq}65$ years) in South Korea.