• Title/Summary/Keyword: Subtractive Algorithm

Search Result 36, Processing Time 0.02 seconds

Predicting the shear strength parameters of rock: A comprehensive intelligent approach

  • Fattahi, Hadi;Hasanipanah, Mahdi
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.511-525
    • /
    • 2021
  • In the design of underground excavation, the shear strength (SS) is a key characteristic. It describes the way the rock material resists the shear stress-induced deformations. In general, the measurement of the parameters related to rock shear strength is done through laboratory experiments, which are costly, damaging, and time-consuming. Add to this the difficulty of preparing core samples of acceptable quality, particularly in case of highly weathered and fractured rock. This study applies rock index test to the indirect measurement of the SS parameters of shale. For this aim, two efficient artificial intelligence methods, namely (1) adaptive neuro-fuzzy inference system (ANFIS) implemented by subtractive clustering method (SCM) and (2) support vector regression (SVR) optimized by Harmony Search (HS) algorithm, are proposed. Note that, it is the first work that predicts the SS parameters of shale through ANFIS-SCM and SVR-HS hybrid models. In modeling processes of ANFIS-SCM and SVR-HS, the results obtained from the rock index tests were set as inputs, while the SS parameters were set as outputs. By reviewing the obtained results, it was found that both ANFIS-SCM and SVR-HS models can provide acceptable predictions for interlocking and friction angle parameters, however, ANFIS-SCM showed a better generalization capability.

Forensic Classification of Median Filtering by Hough Transform of Digital Image (디지털 영상의 허프 변환에 의한 미디언 필터링 포렌식 분류)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.42-47
    • /
    • 2017
  • In the distribution of digital image, the median filtering is used for a forgery. This paper proposed the algorithm of a image forensics detection for the classification of median filtering. For the solution of this grave problem, the feature vector is composed of 42-Dim. The detected quantity 32, 64 and 128 of forgery image edges, respectively, which are processed by the Hough transform, then it extracted from the start-end point coordinates of the Hough Lines. Also, the Hough Peaks of the Angle-Distance plane are extracted. Subsequently, both of the feature vectors are composed of the proposed scheme. The defined 42-Dim. feature vector is trained in SVM (Support Vector Machine) classifier for the MF classification of the forged images. The experimental results of the proposed MF detection algorithm is compared between the 10-Dim. MFR and the 686-Dim. SPAM. It confirmed that the MF forensic classification ratio of the evaluated performance is 99% above with the whole test image types: the unaltered, the average filtering ($3{\times}3$), the JPEG (QF=90 and 70)) compression, the Gaussian filtered ($3{\times}3$ and $5{\times}5$) images, respectively.

Premature Contraction Arrhythmia Classification through ECG Pattern Analysis and Template Threshold (ECG 패턴 분석과 템플릿 문턱값을 통한 조기수축 부정맥분류)

  • Cho, Ik-sung;Cho, Young-Chang;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.437-444
    • /
    • 2016
  • Most methods for detecting arrhythmia require pp interval, diversity of P wave morphology, but it is difficult to detect the p wave signal because of various noise types. Therefore it is necessary to use noise-free R wave. In this paper, we propose algorithm for premature contraction arrhythmia classification through ECG pattern analysis and template threshold. For this purpose, we detected R wave through the preprocessing method using morphological filter, subtractive operation method. Also, we developed algorithm to classify premature contraction wave pattern using weighted average, premature ventricular contraction(PVC) and atrial premature contraction(APC) through template threshold for R wave amplitude. The performance of R wave detection, PVC classification is evaluated by using 6 record of MIT-BIH arrhythmia database that included over 30 PVC and APC. The achieved scores indicate the average of 99.77% in R wave detection and the rate of 94.91%, 95.76% in PVC and APC classification.

Optimal Value Detection of Irregular RR Interval for Atrial Fibrillation Classification based on Linear Analysis (선형분석 기반의 심방세동 분류를 위한 불규칙 RR 간격의 최적값 검출)

  • Cho, Ik-Sung;Jeong, Jong-Hyeog;Cho, Young Chang;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2551-2561
    • /
    • 2014
  • Several algorithms have been developed to detect AFIB(Atrial Fibrillation) which either rely on the linear and frequency analysis. But they are more complex than time time domain algorithm and difficult to get the consistent rule of irregular RR interval rhythm. In this study, we propose algorithm for optimal value detection of irregular RR interval for AFIB classification based on linear analysis. For this purpose, we detected R wave, RR interval, from noise-free ECG signal through the preprocessing process and subtractive operation method. Also, we set scope for segment length and detected optimal value and then classified AFIB in realtime through liniar analysis such as absolute deviation and absolute difference. The performance of proposed algorithm for AFIB classification is evaluated by using MIT-BIH arrhythmia and AFIB database. The optimal value indicate ${\alpha}=0.75$, ${\beta}=1.4$, ${\gamma}=300ms$ in AFIB classification.

Optimization of the Number of Active Antennas for Energy-Efficiency in the MIMO Broadcast Channel (다중 사용자 다중 안테나 하향링크 채널에서 에너지 효율 향상을 위한 기지국 활성 안테나 수 최적화 기법)

  • Choi, Seungkyu;Kim, Dohoon;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.29-34
    • /
    • 2014
  • We introduce a number of antenna optimization problem for the zero-forcing beamforming (ZFBF) scheme to enhance energy-efficiency (EE) of the multiple-input-multiple-output broadcast channel. For proposed optimization problem, we assume an instantaneous channel gain of the ZFBF scheme as an average channel gain, given by $N_a-K+1$, in order to reduce a computational complexity of finding the number of active antennas $N_a$. Then, we convert a fractional-form objective function into a subtractive-form, and find a solution of $N_a$ and the maximum EE by an iterative process. Simulation results show that the maximum EE value obtained by proposed algorithm is almost identical to the optimal EE value by the exhaustive search method.

PVC Classification by Personalized Abnormal Signal Detection and QRS Pattern Variability (개인별 이상신호 검출과 QRS 패턴 변화에 따른 조기심실수축 분류)

  • Cho, Ik-Sung;Yoon, Jeong-Oh;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1531-1539
    • /
    • 2014
  • Premature ventricular contraction(PVC) is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Nevertheless personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. In other words, the design of algorithm that exactly detects abnormal signal and classifies PVC by analyzing the persons's physical condition and/or environment and variable QRS pattern is needed. Thus, PVC classification by personalized abnormal signal detection and QRS pattern variability is presented in this paper. For this purpose, we detected R wave through the preprocessing method and subtractive operation method and selected abnormal signal sets. Also, we classified PVC in realtime through QS interval and R wave amplitude. The performance of abnormal beat detection and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 98.33% in abnormal beat classification error and 94.46% in PVC classification.