This paper describes a technique of probabilistic spectral subtraction which uses the knowledge of both noise and speech so as to reduce automatic speech recognition errors in noisy environments. Spectral subtraction method estimates a noise prototype in non-speech intervals and the spectrum of clean speech is obtained from the spectrum of noisy speech by subtracting this noise prototype. Thus noise can not be suppressed effectively using a single noise prototype in case the characteristics of the noise prototype are different from those of the noise contained in input noisy speech. To modify such a drawback, multiple noise prototypes are used in probabilistic subtraction method. In this paper, the probabilistic characteristics of noise and the knowledge of speech which is embedded in hidden Markov models trained in clean environments are used to suppress noise. Futhermore, dynamic feature parameters are considered as well as static feature parameters for effective noise suppression. The proposed method reduced error rates in the recognition of 50 Korean words. The recognition rate was 86.25% with the probabilistic subtraction, 72.75% without any noise suppression method and 80.25% with spectral subtraction at SNR(Signal-to-Noise Ratio) 10 dB.
In noise reduction method from noisy speech for speech recognition in noisy environments, conventional spectral subtraction method has a disadvantage which distinction of noise and speech is difficult, and characteristic of noise can't be estimated accurately. Also, noise reduction method in the wavelet transform domain has a disadvantage which loss of signal is generated in the high frequency domain. In order to compensate theme disadvantage, this paper propose spectral subtraction method in continuous wavelet transform domain which speech and non- speech intervals is distinguished by standard deviation of wavelet coefficient, and signal is divided three scales at different scale. The proposed method extract accurately characteristic of noise in order to apply spectral subtraction method by end detection and band division. The proposed method shows better performance than noise reduction method using conventional spectral subtraction and wavelet transform from viewpoint signal to noise ratio and Itakura-Saito distance by experimental.
Current school mathematics introduces addition/subtraction between natural numbers, fractions, decimal fractions, and square roots, step-by-step in order. It seems that, however, school mathematics focuses too much on learning the calculation method of addition/subtraction between each stages of numbers, to lead most of students to understand the coherent principle, lying in addition/subtraction algorithm between real numbers in all. This paper raises questions on this problematic approach of current school mathematics, in learning addition/subtraction. This paper intends to clarify the fact that, if we recognize addition/subtraction between numbers from the viewpoint of 'measuring' and 'common measure', as Dewey did when he argued that the psychological origin of the concept of number was measuring, then we could find some common principles of addition/subtraction operation, beyond the superficial differences among algorithms of addition/subtraction between each stages of numbers. At the end, this paper suggests the necessity of improving the methods of learning addition/subtraction in current school mathematics.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.6
/
pp.228-237
/
2013
In this paper, we propose a normalized cross correlation(NCC)-based multiview background subtraction method which is robust when an object and background have similar color. When the background of the capturing environment is not artificially composed, the regions in the background images which would be occluded by an object tends to have difference colors. The colors of those regions, however, becomes similar when an object enters the capturing environment. Based on this assumption, this paper proposes a concept of GoNCC(Graph of Normalized Cross Correlation). GoNCC is the distribution of NCC between a pixel in an image and pixels related by epipolar constraints with the pixel. The proposed multiview background subtraction method is performed by comparing GoNCC of the current images with the background images. To reduce computational complexity, we perform multiview background subtraction only to the pixels undetermined by single view background subtraction. Experimental results show that the proposed method is more robust to color similarity between an object and background than a single-view background subtraction method and a previous multiview background subtraction method.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.52
no.10
/
pp.606-610
/
2003
Noise subtraction using reference channel data has been used to improve signal-to-noise ratio in magnetoencephalography. In this paper, an adaptive noise subtraction model is proposed and parameters for the model are optimized. A criterion to determine an optimal update period for the filter coefficients is proposed based on the ratio of peak amplitude of evoked field (N100m) divided by the output standard deviation. Experiments are carried out using a 40 channel MEG system. From the experiments, the proposed noise subtraction method shows superior performances over existing non-adaptive methods. Two-dimensional topographic map is shown for a diagnosis with a cubic spline interpolation.
In this paper, a new spectral subtraction technique with two microphone inputs is proposed. In conventional spectral subtraction using a single microphone, the averaged noise spectrum is subtracted from the observed short-time input spectrum. This results in reduction of mean value of noise spectrum only, the component varying around the mean value remaining intact. In the method proposed in this paper, the short-time noise spectrum excluding the speech component is estimated by introducing the blocking matrix used in Griffiths-Jim-type adaptive beamformer with two microphone inputs, combined with the spectral compensation technique. A simulation was conducted to verify the effectiveness of the method.
Common-mode noise (CMN) is an unresolved problem in wireless capsule endoscopy (WCE) systems. In a WCE system, CMN originates from various electric currents found within the human body or external interference sources and causes critical demodulation performance degradation. The differential operation, a typical method for the removal of CMN rejection, can remove CMN by subtracting two signals simultaneously received by two reception sensors attached to a human body. However, when there is impedance mismatching between the two reception sensors, the differential operation method cannot completely remove CMN. Therefore, to overcome this problem, we propose an enhanced CMN rejection method. The proposed method performs not only subtraction but also addition between two received signals. Then a CMN ratio can be estimated by sufficient accumulation of division operation outcomes between the subtraction and addition outputs during the guard period. Finally, we can reject the residual CMN by combining the subtraction and addition outputs.
This study described a method of thermoluminescence dating of pottery shards using subtraction method. TL measurement was achieved using two different types of samples prepared by quartz inclusion method and fine-grain technique. Fine grains (size range: $5-10{\mu}m$) were separated by suspending grounded pottery samples into acetone solution and sedimentation quantitatively. In quartz inclusion method quartz grains in the size range of 90 to $125{\mu}m$ diameter were obtained by extracting the quartz crystals embed in the pottery shards and etching them with 1.0 M HF solutions. The archaeological dose of both the quartz and fine grains was determined from the dose calibration curves obtained from sequential irradiation of $^{137}Cs$ gamma and $^{241}Am$ alpha source to the samples and TL measurement of natural samples, in which the alpha dose of 4.60 Gy for the Packjae pottery was obtained using subtraction method. Annual alpha dose rates ($3.05{\pm}0.11$ mGy/yr.) were determined by the analysis of U, Th contents in the pottery shards and evaluation of the values with Bell's equation. Dividing the alpha dose accumulated in the pottery shards by the annual alpha dose rate, we found age of approximately $1508{\pm}80$ years B.P. (AD. ca. 492 yr.) for the Packjae pottery. It matches well with the archeological age estimate (middle of 5th century) within 10 percent uncertainty and thereby conforms the age of the pottery sample.
In speech recognition for real-world applications, the performance degradation due to the mismatch introduced between training and testing environments should be overcome. In this paper, to reduce this mismatch, we provide a hybrid method of spectral subtraction and residual noise masking. We also employ multiple model approach to obtain improved robustness over various noise environments. In this approach, multiple model sets are made according to several noise masking levels and then a model set appropriate for the estimated noise level is selected automatically in recognition phase. According to speaker independent isolated word recognition experiments in car noise environments, the proposed method using model sets with only two masking levels reduced average word error rate by 60% in comparison with spectral subtraction method.
Cepstral Mean Subtraction (CMS) makes effectively compensation for a channel distortion, but there are some shortcomings such as distortions of feature parameters, waiting for the whole speech sentence. By assuming that the silence parts have the channel characteristics, we consider the channel normalization using subtraction of cepstral means which are only obtained in the silence areas. If the considered techniques are successfully used for the channel compensation, the proposed method can be used for real time processing environments or time important areas. In the experiment result, however, the performance of our method is not good as CMS technique. From the analysis of the results, we found potentiality of the proposed method and will try to find the technique reducing the gap between CMS and ours method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.