• Title/Summary/Keyword: Subtraction method

Search Result 433, Processing Time 0.024 seconds

A Robust Hand Recognition Method to Variations in Lighting (조명 변화에 안정적인 손 형태 인지 기술)

  • Choi, Yoo-Joo;Lee, Je-Sung;You, Hyo-Sun;Lee, Jung-Won;Cho, We-Duke
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.25-36
    • /
    • 2008
  • In this paper, we present a robust hand recognition approach to sudden illumination changes. The proposed approach constructs a background model with respect to hue and hue gradient in HSI color space and extracts a foreground hand region from an input image using the background subtraction method. Eighteen features are defined for a hand pose and multi-class SVM(Support Vector Machine) approach is applied to learn and classify hand poses based on eighteen features. The proposed approach robustly extracts the contour of a hand with variations in illumination by applying the hue gradient into the background subtraction. A hand pose is defined by two Eigen values which are normalized by the size of OBB(Object-Oriented Bounding Box), and sixteen feature values which represent the number of hand contour points included in each subrange of OBB. We compared the RGB-based background subtraction, hue-based background subtraction and the proposed approach with sudden illumination changes and proved the robustness of the proposed approach. In the experiment, we built a hand pose training model from 2,700 sample hand images of six subjects which represent nine numerical numbers from one to nine. Our implementation result shows 92.6% of successful recognition rate for 1,620 hand images with various lighting condition using the training model.

Signal Processing for Speech Recognition in Noisy Environment (잡음 환경에서 음성 인식을 위한 신호처리)

  • Kim, Weon-Goo;Lim, Yong-Hoon;Cha, Il-Whan;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.73-84
    • /
    • 1992
  • This paper studies noise subtraction methods and distance measures for speech recognition in a noisy environment, and investigates noise robustness of the distance measures applied to the problem of isolated word recognition in white Gaussian and colored noise (vehicle noise) environments. Noise subtraction methods which can be used as a pre-processor for the speech recognition system, such as the spectral subtraction method, autocorrelation subtraction method, adaptive noise cancellation and acoustic beamforming are studied, and distance measures such and Log Likelihood Ratio ($d_{LLR}$), cepstral distance measure ($d_{CEP}$), weighted cepstral distance measure ($d_{WCEP}$), spectral slope distance measure ($d_{RPS}$) and cepstral projection distance measure ($d_{CP},\;d_{BCP},\;d_{WCP},\;d_{BWCP}$) are also investigated. Testing of the distance measures for speaker-dependent isolated word recognition in a noisy environment indicate that $d_{RPS}\;and\;d_{WCEP}$ which weigh higher order cepstral coefficients more heavily give considerable performance improvement over $d_{CEP}and\;d_{LLR}$. In addition, when no pre-emphasis is performed, the recognizer can maintain higher performance under high noise conditions.

  • PDF

Comparison of bone subtraction CT angiography with standard CT angiography for evaluating circle of Willis in normal dogs

  • Soyon An;Gunha Hwang;Rakhoon Kim;Tae Sung Hwang;Hee Chun Lee
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.65.1-65.9
    • /
    • 2023
  • Background: Bone subtraction computed tomography angiography (BSCTA) is a useful alternative technique for improving visualization of vessels surrounded by skull bone. However, no studies have compared computed tomography angiography (CTA) and BSCTA for improving the visibility of canine cerebral blood vessels. Objectives: To evaluate the potential benefit of BSCTA for better delineation of brain arteries of the circle of Willis (CoW) in dogs by comparing BSCTA with non-subtraction computed tomography angiography (NSCTA). Methods: Brain CTA was performed for nine healthy beagle dogs using a bolus tracking method with saline flushing. A total dose of 600 mgI/kg of contrast agent with an iodine content of 370 mgI/mL was injected at a rate of 4 ml/s. Bone removal was achieved automatically by subtracting non-enhanced computed tomography (CT) data from contrast CT data. Five main intracranial arteries of the CoW were analyzed and graded on a scale of five for qualitative evaluation. Results: Scores of basilar artery, middle cerebral artery, and rostral cerebral artery in the BSCTA group were significantly higher than those in the NSCTA group (p = 0.001, p = 0.020, and p < 0.0001, respectively). Scores of rostral cerebellar artery (RcA) and caudal cerebral artery (CCA) did not differ significantly between the two groups. However, scores of RcA and CCA in the BSCTA group were higher than those in the NSCTA group. Conclusions: BSCTA improved visualization of intracranial arteries of the CoW with close contact to bone. Thus, it should be recommended as a routine scan method in dogs suspected of having brain vessel disease.

Automatic prostate segmentation method on dynamic MR images using non-rigid registration and subtraction method (동작 MR 영상에서 비강체 정합과 감산 기법을 이용한 자동 전립선 분할 기법)

  • Lee, Jeong-Jin;Lee, Ho;Kim, Jeong-Kon;Lee, Chang-Kyung;Shin, Yeong-Gil;Lee, Yoon-Chul;Lee, Min-Sun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.348-355
    • /
    • 2011
  • In this paper, we propose an automatic prostate segmentation method from dynamic magnetic resonance (MR) images. Our method detects contrast-enhanced images among the dynamic MR images using an average intensity analysis. Then, the candidate regions of prostate are detected by the B-spline non-rigid registration and subtraction between the pre-contrast and contrast-enhanced MR images. Finally, the prostate is segmented by performing a dilation operation outward, and sequential shape propagation inward. Our method was validated by ten data sets and the results were compared with the manually segmented results. The average volumetric overlap error was 6.8%, and average absolute volumetric measurement error was 2.5%. Our method could be used for the computer-aided prostate diagnosis, which requires an accurate prostate segmentation.

Speech Processing System Using a Noise Reduction Neural Network Based on FFT Spectrums

  • Choi, Jae-Seung
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • This paper proposes a speech processing system based on a model of the human auditory system and a noise reduction neural network with fast Fourier transform (FFT) amplitude and phase spectrums for noise reduction under background noise environments. The proposed system reduces noise signals by using the proposed neural network based on FFT amplitude spectrums and phase spectrums, then implements auditory processing frame by frame after detecting voiced and transitional sections for each frame. The results of the proposed system are compared with the results of a conventional spectral subtraction method and minimum mean-square error log-spectral amplitude estimator at different noise levels. The effectiveness of the proposed system is experimentally confirmed based on measuring the signal-to-noise ratio (SNR). In this experiment, the maximal improvement in the output SNR values with the proposed method is approximately 11.5 dB better for car noise, and 11.0 dB better for street noise, when compared with a conventional spectral subtraction method.

Concrete crack detection using shape properties (형태의 특징을 이용한 콘크리트 균열 검출)

  • Joh, Beom Seok;Kim, Young Ro
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.17-22
    • /
    • 2013
  • In this paper, we propose a concrete crack detection method using shape properties. It is based on morphology algorithm and crack features. We assume that an input image is contaminated by various noises. Thus, we use a morphology operator and extract patterns of crack. It segments cracks and background using opening and closing operations. Morphology based segmentation is better than existing integration methods using subtraction in detecting a crack it has small width. Also, it is robust to noisy environment. The proposed algorithm classifies the segmented image into crack and background using shape properties of crack. This method calculates values of properties such as the number of pixels and the maximum length of the segmented region. Also, pixel counts of clusters are considered. We decide whether the segmented region belongs to cracks according to those data. Experimental results show that our proposed crack detection method has better results than those by existing detection methods.

An Analysis of 2D Positional Accuracy of Human Bodies Detection Using the Movement of Mono-UWB Radar

  • Kiasari, Mohammad Ahangar;Na, Seung You;Kim, Jin Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • This paper considers the ability of counting and positioning multi-targets by using a mobile UWB radar device. After a background subtraction process, distinguishing between clutters and human body signals, the position of targets will be computed using weighted Gaussian mixture methods. While computer vision offers many advantages, it has limited performance in poor visibility conditions (e.g., at night, haze, fog or smoke). UWB radar can provide a complementary technology for detecting and tracking humans, particularly in poor visibility or through-wall conditions. As we know, for 2D measurement, one method is the use of at least two receiver antennas. Another method is the use of one mobile radar receiver. This paper tried to investigate the position detection of the stationary human body using the movement of one UWB radar module.

Design and Implementation of Biological Signal Measurement Algorithm for Remote Patient Monitoring based on IoT (IoT기반 원격환자모니터링을 위한 생체신호 측정 알고리즘 설계 및 구현)

  • Jung, Ae-Ran;You, Yong-Min;Lee, Sang-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.957-966
    • /
    • 2018
  • Recently, the demand for remote patient monitoring based on IoT has been increased due to aging population and an increase in single-person household. A non-contact biological signal measurement system using multiple IR-UWB radars for remote patient monitoring is proposed in this paper. To reduce error signals, a multilayer Subtraction algorithm is applied because when the background subtraction algorithm was applied to the biological signal processing, errors occurred such as voltage noise and staircase phenomenon. Therefore, a multilayer background subtraction algorithm is applied to reduce error occurrence. The multilayer background subtraction algorithm extracts the signal by calculating the amount of change between the previous clutter and the current clutter. In this study, the SVD algorithm is used. We applied the improved multilayer background subtraction algorithm to biological signal measurement and computed the respiration rate through Fast Fourier Transform (FFT). To verify the proposed system using IR-UWB radars and multilayer background subtraction algorithm, the respiration rate was measured. The validity of this study was verified by obtaining a precision of 97.36% as a result of a control experiment with Neulog's attachment type breathing apparatus. The implemented algorithm improves the inconvenience of the existing contact wearable method.

Robust Speech Recognition Using Missing Data Theory (손실 데이터 이론을 이용한 강인한 음성 인식)

  • 김락용;조훈영;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.56-62
    • /
    • 2001
  • In this paper, we adopt a missing data theory to speech recognition. It can be used in order to maintain high performance of speech recognizer when the missing data occurs. In general, hidden Markov model (HMM) is used as a stochastic classifier for speech recognition task. Acoustic events are represented by continuous probability density function in continuous density HMM(CDHMM). The missing data theory has an advantage that can be easily applicable to this CDHMM. A marginalization method is used for processing missing data because it has small complexity and is easy to apply to automatic speech recognition (ASR). Also, a spectral subtraction is used for detecting missing data. If the difference between the energy of speech and that of background noise is below given threshold value, we determine that missing has occurred. We propose a new method that examines the reliability of detected missing data using voicing probability. The voicing probability is used to find voiced frames. It is used to process the missing data in voiced region that has more redundant information than consonants. The experimental results showed that our method improves performance than baseline system that uses spectral subtraction method only. In 452 words isolated word recognition experiment, the proposed method using the voicing probability reduced the average word error rate by 12% in a typical noise situation.

  • PDF

Performance Improvements for Silence Feature Normalization Method by Using Filter Bank Energy Subtraction (필터 뱅크 에너지 차감을 이용한 묵음 특징 정규화 방법의 성능 향상)

  • Shen, Guanghu;Choi, Sook-Nam;Chung, Hyun-Yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.604-610
    • /
    • 2010
  • In this paper we proposed FSFN (Filter bank sub-band energy subtraction based CLSFN) method to improve the recognition performance of the existing CLSFN (Cepstral distance and Log-energy based Silence Feature Normalization). The proposed FSFN reduces the energy of noise components in filter bank sub-band domain when extracting the features from speech data. This leads to extract the enhanced cepstral features and thus improves the accuracy of speech/silence classification using the enhanced cepstral features. Therefore, it can be expected to get improved performance comparing with the existing CLSFN. Experimental results conducted on Aurora 2.0 DB showed that our proposed FSFN method improves the averaged word accuracy of 2% comparing with the conventional CLSFN method, and FSFN combined with CMVN (Cepstral Mean and Variance Normalization) also showed the best recognition performance comparing with others.