• Title/Summary/Keyword: Subsystem

Search Result 1,059, Processing Time 0.024 seconds

Development of ETRI satellite simulator-ARTSS

  • Kang, J.Y.;Lee, S.;Hong, K.Y.;Shin, K.K.;Rhee, S.W.;Choi, W.S.;Oh, H.S.;Kim, J.M.;Chung, S.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.49-53
    • /
    • 1994
  • Advanced Real-Time Satellite Simulator(ARTSS) has been developed to support the telemetry, tracking and command operations of the ETRI satellite control system and to provide satellite engineers a more powerful and informative satellite simulations tool on the desktop. To provide extensive simulation functions for a communication satellite system in the pre-operational and operational missions, ARTSS uses a geosynchronous orbit(GEO) satellite model consisting of the attitude and orbit control subsystem, the power subsystem, the thermal subsystem, the telemetry, command and ranging subsystem, and the communications payload subsystem. In this paper, the system features and functions are presented and the satellite subsystem models are explained in detail.

  • PDF

AICPS Management Network Integration (PC 통신 서비스 상호 접속 시스템(AICPS)의 통합 관리망)

  • Hong, Yong-Pio;Yun, Sung-Je;Lee, Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.11-21
    • /
    • 1999
  • Physically, AICPS consists of HSSF(High Speed Switching Fabric) and various types of service interface modules to support services of homogeneous communication networks. Functionally, AICPS consists of UANS(User Access Network Subsystem) to connect users with communication networks, IDNS(Information Delivery Network Subsystem) to connect Information-Providers with information delivery network, and LOMS(Local Operations and Management System to manage AICPS. This paper describes the structures of LOMS, ONAS(Operational Network Access Subsystem), which interfaces between LOMS and HSSF, and describes reliability improvement algorithms and construction methods of nationwide management structure of AICPS.

  • PDF

Systematic Embedded Subsystem Development Methodology for POP System (POP 시스템 개발에 있어서의 체계적인 임베디드 서브시스템 개발방법론)

  • Jo, Young-Hyo;Han, Kwan-Hee;Choi, Sang-Hyun
    • IE interfaces
    • /
    • v.23 no.1
    • /
    • pp.35-47
    • /
    • 2010
  • This paper presents a structured framework for developing the embedded subsystem, called ESDMP (Embedded Subsystem Development Methodology for POP), which is one of core components at the development of POP (Point Of Production) system. It is essential that embedded subsystem development methodology must be closely related to the general information system development methodology from the early stage of system development. Therefore, this paper investigates the PDSM (Production System Development Methodology) that is developed by Korea Technology and Information Promotion Agency for SMEs and widely utilized at the fields of POP system development, and proposes the embedded subsystem development methodology aligned with each step of PSDM. The main characteristics of proposed methodology are as follows : First, it is developed to link each step of embedded subsystem development with relating steps of PSDM from the early stage of feasibility study. Second, it provides the procedure for designing and implementing hardware and software simultaneously. Third, it includes the method of reusability for developed products and modules.

A Study on Steady-State and Transient Simulation of Turboprop Engine Using SIMULINK® Model (SIMULINK® Model를 이용한 터보프롭엔진의 정상상태 및 천이모사 연구)

  • Gong, Chang Deok;Im, Gang Taek
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.100-109
    • /
    • 2003
  • A performacne simulation model of the PT6A-62 turboprop engine using the $SIMULINK^R$ was proposed to predict transient and steady state behaviors. The $SIMULINK^R$ has several advantages such as user-friendliness due to the GUI(Graphic User Interfaces) and ease in the modification of the computer program. The $SIMULINK^R$ model consists of subsystems to represent engine gas path components such as flight initial subsystem, compressor subsystem, burner subsystem, compressor turbine subsystem, power turbine, exhaust nozzle subsystem and integrator subsystem. In addition to subsystems, there are search subsystems to find an appropriate operating point by scaling from the 2-D components look-up table, Gasprop Subsystem to calculate the gas property precisely. In case of steady state validation, performance results analyzed by the proposed $SIMULINK^R$ model were agreed well with the analysis results by the commercial GASTURB program. Moreover in validation of the transient model, it was found that performance simulation results by the proposed model were reasonable agreement with analysis results by the well-proved computer program using FORTRAN.

Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station (위성항법 지상국 감시제어시스템 예비설계)

  • Jeong, Seong-Kyun;Lee, Jae-Eun;Park, Han-Earl;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.227-238
    • /
    • 2008
  • GNSS (Global Navigation Satellite System) Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute) is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language) method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

Electrical Power Subsystem Performance Evaluation of the GEO Satellite (정지궤도위성 전력계 성능 평가)

  • Koo, Ja Chun;Ra, Sung Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.31-41
    • /
    • 2014
  • The satellite on geostationary orbit accommodates multiple payloads into a single spacecraft platform and launched in June 26, 2010. The Electrical Power Subsystem provides a fully regulated power bus at $50V_{DC}$ in sunlight and eclipse conditions. The electrical power required to the satellite is generated by a solar array wing and the energy is stored by a Li-Ion battery with a capacity of 192.5Ah. This paper selects the main design parameters, compares and analyzes with the results at ground test and in orbit operation to apply this performance evaluation of the Electrical Power Subsystem to next satellite design on geostationary orbit. The Electrical Power Subsystem is demonstrated nominal behavior without significant degradation through the performance evaluation from design to in orbit operation.

Structural health monitoring system for Sutong Cable-stayed Bridge

  • Wang, Hao;Tao, Tianyou;Li, Aiqun;Zhang, Yufeng
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.317-334
    • /
    • 2016
  • Structural Health Monitoring System (SHMS) works as an efficient platform for monitoring the health status and performance deterioration of engineering structures during long-term service periods. The objective of its installation is to provide reasonable suggestions for structural maintenance and management, and therefore ensure the structural safety based on the information extracted from the real-time measured data. In this paper, the SHMS implemented on a world-famous kilometer-level cable-stayed bridge, named as Sutong Cable-stayed Bridge (SCB), is introduced in detail. The composition and core functions of the SHMS on SCB are elaborately presented. The system consists of four main subsystems including sensory subsystem, data acquisition and transmission subsystem, data management and control subsystem and structural health evaluation subsystem. All of the four parts are decomposed to separately describe their own constitutions and connected to illustrate the systematic functions. Accordingly, the main techniques and strategies adopted in the SHMS establishment are presented and some extension researches based on structural health monitoring are discussed. The introduction of the SHMS on SCB is expected to provide references for the establishment of SHMSs on long-span bridges with similar features as well as the implementation of potential researches based on structural health monitoring.

Multimedia System for Developing Web based UCC Services (웹 기반 UCC 서비스 개발을 위한 멀티미디어 시스템)

  • Bok, Kyoung-Soo;Yeo, Myung-Ho;Lee, Mi-Sook;Lee, Nak-Gyu;Yoo, Kwan-Hee;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.48-56
    • /
    • 2008
  • In this paper, we design and implement the UCC services prototype system for image and video. The proposed system consists of the two components such as the multimedia processing subsystem and the metadata management subsystem. It provides the API to UCC service developers. The multimedia processing subsystem supports the media management and editing of image and video, and the streaming services of video. The metadata management subsystem supports the metadata management and retrieval of image and video. The reply management and script processing of UCC are given in the subsystem.

Models and Methods for the Evaluation of Automobile Manufacturing Supply Chain Coordination Degree Based on Collaborative Entropy

  • Xiao, Qiang;Wang, Hongshuang
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.208-222
    • /
    • 2022
  • Through the analysis of the coordination mechanism of the supply chain system of China's automobile manufacturing industry, the factors affecting the supply subsystem, the manufacturing subsystem, the sales subsystem, and the consumption subsystem are sorted out, the supply chain coordination index system based on the influence factor of four subsystems is established. The evaluation models of the coordination degree in the subsystem of the supply chain, the coordination degree among the subsystems, and the comprehensive coordination degree are established by using the efficiency coefficient method and the collaborative entropy method. Experimental results verify the accuracy of the evaluation model using the empirical analysis of the collaborative evaluation index data of China's automobile manufacturing industry from 2000 to 2019. The supply chain synergy of automobile manufacturing industry was low from 2001 to 2005, and it increased to a certain extent from 2006 to 2008 with a small growth rate from 0.10 to 0.15. From 2009 to 2013, the supply chain synergy of automobile manufacturing industry increased rapidly from 0.24 to 0.49, and it also increased rapidly but fluctuated from 2014 to 2019, first rising from 0.68 to 0.84 then dropping to 0.71. These results provide reference for the development of China's automobile manufacturing supply chain system and scientific decision-making basis for the formulation of relevant policies of the automobile manufacturing industry.

The study on Failover subsystem of SCADA system (SCADA 시스템의 FAILOVER SUBSYSTEM에 관한 연구)

  • Kim, Young-Tae;Cho, Nam-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.835-837
    • /
    • 1999
  • Failover subsystem of computer consists four modes In this paper, These modes will be discussed in more detail. - dual computer mode - failover mode - single computer mode - standby synchronization mode we have suggested the method of dual/redunancy configulation of server computer. Failover is activated by the standby computer, active computer receives a failover request across the inter-computer link immediatly. The active computer controls the scada system and maintains the current state in it's data base and channel system safety.

  • PDF