• Title/Summary/Keyword: Subsurface environment

Search Result 334, Processing Time 0.027 seconds

A Study on Definition of Subsurface Environment in Korea (지중 환경의 정의에 대한 정책적 고찰)

  • Yang, Jihoon;Yoo, Keunje;Hwang, Sang Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.14-21
    • /
    • 2016
  • Many improper development action were performed at subsurface environment, because there were not any definition about subsurface environment in Korea. The purpose of this study was to establich a definition on subsurface environment. Subsurface environment could be divided by subsurface natural environment and subsurface living environment. The soil, groundwater, ecosystems, landscapes, underground space (naturally occurred) were included in subsurface natural environment. And space and facilities used by human were classified as subsurface living environment.

State of the Art on Legislation for Subsurface Environment Management in Korea (지중환경관리 법제도에 대한 고찰)

  • Yang, Jihoon;Yoo, Keunje;Hwang, Sang Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.6-13
    • /
    • 2016
  • Many legislations have been implemented in order to manage the subsurface environment in Korea. However, there was no control tools for managing subsurface environment so effectively. In this study, many laws and regulations were analyzed for extracting Korean subsurface environment management plan. Korean government need to 1) establish the basic paradigm for building the subsurface space, 2) establish the clear subsurface environment management systems, 3) establish the regulations related with subsurface space compensation, 4) prepare the human health and ecosystem related legislations.

Development and Enhancement of Conceptual Site Model for Subsurface Environment Management (지중환경 관리를 위한 부지개념모델 구축 및 개선)

  • Bae, Min Seo;Kim, Juhee;Lee, Soonjae;Kwon, Man Jae;Jo, Ho Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.1-18
    • /
    • 2022
  • A conceptual site model is used to support decision-making of response strategy development, determination, and implementation within a risk-based contaminated site management system. It aims to provide base information of the relevant site characteristics and surface/subsurface conditions in order to understand the contaminants of concern and the associated risk they pose to the receptors. This study delineated the technical details of conceptual site model development, and discussed the possibility of applying it in domestic subsurface contamination management. Conceptual site models can be developed in various formats such as tables, diagrams, flowcharts, and figures. Contaminated sites are managed for a long period of time following the steps of investigation, remediation design, remediation, verification, and post-remedation management. The conceptual site model can be enhanced in each stage of the contaminated site management based on the continuously updated information on the site's subsurface environment. In the process of enhancement for conceptual site model, precision is gradually improved, and it can evolve from a conceptual and qualitative form to a more quantitatvive and three-dimensional model. In soil pollution management, it is desirable to incorporate the conceptual site model into the soil scrutiny system to better assess the current status of the contaminated site and support follow-up investigation and management.

Current Status and Application of Agricultural Subsurface Dams in Korea (국내 농업용 지하댐의 현황 및 활용 사례)

  • Yong, Hwan-Ho;Song, Sung-Ho;Myoung, Woo-Ho;An, Jung-Gi;Hong, Soon-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.18-26
    • /
    • 2017
  • The increasing frequency of droughts has been increasing the necessity of utilizing subsurface dams as reliable groundwater resources in areas where it is difficult to supply adequate agricultural water using only surface water. In this study, we analyzed the current status and actual conditions of five agricultural subsurface dams as well as the effect of obtaining additional groundwater from subsurface dams operated as one aspect of the sustainable integrated water management system. Based on the construction methods and functions of each subsurface dam, the five subsurface dams are classified into three types such as those that derive water from rivers, those that prevent seawater intrusion, and those that link to a main irrigation canal. The classification is based on various conditions including topography, reservoir location, irrigation facilities, and river and alluvial deposit distributions. Agricultural groundwater upstream of subsurface dams is obtained from four to five radial collector wells. From the study, the total amount of groundwater recovered from the subsurface dam is turned out to be about 29~44% of the total irrigation water demand, which is higher than that of general agricultural groundwater of about 4.6%.

Development of Suitable Sites Assessment Criteria for Agricultural Subsurface Dam for drought Management using Analytic Hierarchy Process (AHP) (가뭄대비 농업용 지하댐 적지 평가 지표 개발 - 계층분석과정의 적용 -)

  • Myoung, Woo-Ho;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.37-47
    • /
    • 2017
  • Climate change has often resulted in severe droughts in a rice-farming season (i.e., April to June), and the large amount of water resources were needed to cope with droughts during the season. Therefore, the subsurface dam, which is able to store groundwater resources in the alluvium aquifer, has been considered to be an alternative for securing more groundwater resources. In this study, suitable sites assessment criteria for agricultural subsurface dam using analytic hierarchy process (AHP) were established for adequate drought management. Moreover, the criteria were applied to the existing five agricultural subsurface dams to verify their applicability of groundwater supply for each subsurface dam. The assessment criteria were divided into three major categories (geology, hydrology and business condition) and classified to 12 individual sub-categories with weighting. From the assessment, Ian subsurface dam and Wooil subsurface dam were identified as the best and the worst suitable site, respectively, and this result was in accordance with the average amount of annual groundwater supply by each subsurface dam during the period of 2011-2017.

Construction and Refinement of Conceptual Site Model Based on Scrutiny of Oil Contaminated Site (유류오염부지 정밀조사에 기반한 부지개념모델 구축 및 개선)

  • Min Seo Bae;Mingyeong Kim;Juhee Kim;Soonjae Lee;Man Jae Kwon;Ho Young Jo
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.2
    • /
    • pp.12-29
    • /
    • 2023
  • Conceptual site model (CSM) development and enhancement for contaminated sites assists in identifying data gaps during the site investigation process. In this study, CSM was developed and enhanced for a contaminated site in Korea as a case study. Site Y was scrutinized four times previously. The site profiles for each scrutiny were reorganized based on the scrutiny reports, and the relevant data was utilized to develop and enhance CSMs. CSM for the first investigation was developed in various forms including table, flowchart, diagram, and narrative formats. CSM was enhanced in a stepwise manner by incorporating the updated profile information obtained in next investigation to existing CSM. The hypothetical data gap analysis between each investigation step was established to meet the purpose of the follow-up investigation. This case study showed that CSM is a useful tool to identify the history and current status of contaminated sites and thereby help in planning supplementary investigations for better site characterization.

Evaluation of Flow and Transport Model in Integrated Surface and Subsurface Systems

  • Kim Seong-Gyun;Park Yeong-Jin;Bae Gwang-Ok;Lee Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.324-327
    • /
    • 2005
  • HydroSphere can simulate integrated surface and subsurface flow and transport. Using field experiments conducted at Canadian Forces Base Borden, in Ontario, Canada, by Abdul [1985], HydroSphere is evaluated to verify its capabilities for fully integrated surface and subsurface flow modeling. And a field scale simulation will be performed with HydroSphere, using rainfall and surface and subsurface hydrogen isotope analysis data measured at small basin, in Yu-sung, by Park et al. [2003], to verify its capabilities for fully integrated surface and subsurface flow and transport modeling.

  • PDF

Partitioning Interwell Tracer Test for NAPL Source Characterization: A General Overview

  • Lee, Tony R.;A. Lynn Wood;Jeong, Seung-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.159-162
    • /
    • 2002
  • Innovative and nondestructive characterization techniques have been developed to locate and quantify nonaqueous phase liquids (NAPLs) in the vadose and saturated zones in the subsurface environment. One such technique is the partitioning interwell tracer test (PITT). The PITT is a simultaneous displacement of partitioning and non-partitioning tracers through a subsurface formation. Partitioning tracers will partition into the NAPL during their transport through NAPL-contaminated formations. Mean travel times of partitioning and non-partitioning tracers are used to estimate the quantity of NAPL encountered by the displaced tracer pulse. Travel times are directly proportional to the partitioning coefficient and the volume of NAPL contacted in the subsurface environment. This paper discusses the conceptual background, design and implementation of PITTs. (This document has not been subjected to Agency review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.)

  • PDF

Estimating groundwater recharge from time series measurements of subsurface temperature

  • Koo, Min-Ho;Kim, Yongje
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.213-216
    • /
    • 2003
  • Efforts for better understanding of the interaction between groundwater recharge and thermal regime of the subsurface medium is gaining momentum for its diverse applications in water resources. A numerical model is developed to simulate temperature variations of the subsurface under time varying groundwater recharge. The model utilizes MacCormack scheme for finite difference approximation of the partial differential equation describing the conductive and advective heat transport. For the estimation of recharge rate, optimization of the model is realized by searching for the unknown parameters which minimize the root-mean-square error between simulated and measured temperatures. Simulation results for 22-year time series data of temperature measurements reveal that the proposed model can accurately simulate subsurface temperature variations resulting from the redistribution of the heat due to the movement of water and it can also estimate temporal variations of recharge. Seasonal variations of recharge and a linear relationship between precipitation and recharge are clearly reflected in the simulated results.

  • PDF

Construction of a Preliminary Conceptual Site Model Based on a Site Investigation Report for Area of Concerns about Groundwater Contamination (지하수 오염우려지역 실태조사 보고서 기반의 사전 부지개념모델 구축)

  • Kim, Juhee;Bae, Min Seo;Kwon, Man Jae;Jo, Ho Young;Lee, Soonjae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.64-74
    • /
    • 2022
  • The conceptual site model (CSM) is used as a key tool to support decision making in risk based management of contaminated sites. In this work, CSM was applied in Jeonju Industrial Complex where site investigation for groundwater contamination was conducted. Site background information including facility types, physical conditions, contaminants spill history, receptor exposure, and ecological information were collected and cross-checked with tabulated checklist necessary for CSM application. The CSM for contaminants migration utilized DNAPL transport model and narrative CSMs were constructed for source to receptor pathway, ecological exposure route, and contaminants fate and transport in the form of a diagram or flowchart. The component and uncertainty of preliminary CSM were reviewed using the data gap analysis while taking into account the purpose of the survey and the site management stage at the time of the survey. Through this approach, the potential utility of CSM was demonstrated in the site management process, such as assessing site conditions and planning follow-up survey work.