• Title/Summary/Keyword: Subsurface drain device

Search Result 1, Processing Time 0.014 seconds

Design and Application of Subsurface Drainage Devices for Multipurpose Farmland

  • Jeon, Jong Gil;Choi, Yong Hun;Kim, Min Young;Kim, Young Gjin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.265-275
    • /
    • 2017
  • Purpose: This study aims to identify the most stable boring shape among the circle, square, and inverted-triangle types in order to be applied to the development of a tractor-pulled underdrain boring device. Methods: The underdrain boring devices designed with the circle, inverted triangle, and square types were analyzed by numerical analysis, and they were evaluated by soil moisture and underground water level in the test field. Results: The results of the numerical analysis indicated that the increases in displacement, and strain when a uniform load is placed on the surface soil with soil weight were in the order of the inverted-triangle type, square type, and circle type. The soil moisture content and the underground water level after rainfall showed the largest difference in the order of the circle type, square type, and inverted-triangle type, indicating that the circle type had the largest drainage effects after rainfall. Conclusions: The overall findings of this study show that the circle type is the most stable among the circle, square, and inverted-triangle types.