• Title/Summary/Keyword: Subsurface Cavity

Search Result 23, Processing Time 0.019 seconds

Ground Subsidence Mechanism by Ground Water Level and Fine Contents (지하수위와 세립분 함유량에 따른 지반함몰 메커니즘)

  • Kim, JinYoung;Lee, SungYeol;Choi, ChangHo;Kang, JaeMo;Kang, KwonSoo;Jeong, HyoJin;Hong, JaeCheol;Lee, JaeSoo;Baek, WonJin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.83-91
    • /
    • 2017
  • Recently, ground subsidence frequently occurs in downtown area. The major causes of the subsidence on the subsurface were the damages of the water supply and sewer pipelines and excavation works in adjacent areas, etc. Because of these various factors, it is not easy to analyze the tendency of occurrence of ground subsidence. The purpose of this study is to clarify the effect of ground subsidence by the change of the fine particle content and ground water level and to establish the ground subsidence mechanism. In this study, a model soil-box was manufactured to simulate the failure of the old sewer pipe which is one of the causes on ground subsidence. And a model test was conducted to investigate the effects of fine contents and ground water level on the cavity occurrence. From the test results, firstly the higher the ground water level, the faster the primary cavity is formed as the seepage stress increases. As a result, the secondary cavity and the ground subsidence rapidly progress due to the relaxation of the surrounding ground. The total amount of discharged soil was decreased as the fine content increased.

A Sudy on the Underground Condition of Road Using 3D-GPR Exploration (3D-GPR탐사를 이용한 도로하부 지반상태에 대한 연구)

  • Lee, Sung-Ho;Jang, Il-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • A study on the analysis of underground ground condition using 3D-GPR exploration was carried out in this paper. The test bed was constructed similar to the field, and the detection analysis was carried out for each depth of cavity and underground burial. Through this, we were able to know the permittivity of the ground by inversion, and we could confirm the depth of detection for the joint by accurate calculation. We confirmed the signal waveforms in the cavity under the road through 3D-GPR exploration, analyzed more quantitatively in subjective and empirical analysis. The subsidence and depth of the subsurface settlement can be observed through 3D-GPR survey, and ground condition change after the ground reinforcement can be confirmed through the exploration section.

A Case Study of Site Investigation and Ground Stability Analysis for Diagnosis of Subsidence Occurrence in Limestone Mine (석회석 광산 지역의 지반침하 원인 규명을 위한 현장조사와 지반 안정성 분석 사례)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong;Oh, Seok-Hoon
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.332-340
    • /
    • 2015
  • Ground subsidence occurring in mine area can cause an enormous damage of loss of lives and properties, and a systematic survey should be conducted a series of field investigation and ground stability analysis in subsidence area. This study describes the results from field investigation and ground stability analysis in a limestone mine located in Cheongwon-gun, Chungcheongbuk-do, Korea. Rock mechanical measurements and electrical resistivity surveys are applied to obtain the characteristics of in-situ rock masses and the distribution patterns of subsurface weak zone, and their results are extrapolated in numerical analysis. From the field investigation and stability analysis, it is concluded that the subsidence occurrence in this limestone mine is caused mainly by subsurface limestone cavities.

Evaluation of Cavity Characterization Using Infrared Thermal Images (적외선 이미지를 이용한 지하공동 평가)

  • Jang, Byeong-Su;Kim, Young-Seok;Kim, Se-Won ;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.69-76
    • /
    • 2023
  • Cavity causes settlement and its remediation after an accident results in significant time and economic losses. This study aims to experimentally evaluate the prospect of using infrared camera to detect and measure underground subsidence. Emissivity is necessary to detect the energy emitted from an object and accurately assess temperature using an infrared camera. The emissivity in laboratory tests is fixed to evaluate a reasonable distance between the infrared camera and the object, and temperature values are assessed at various distances. In field experiments, the cavity of the field experiment is simulated using a PVC pipe with a diameter of 5 cm, artificially buried at depths of 5 and 25 cm from the surface. The infrared camera measurements are taken from 4 PM to 3 PM of the next day (a total of 23 h). The analysis included the time-series temperature distribution and the cooling rate index assessment, which represents the temperature change rate per unit of time. The results showed that various temperature trends are observed depending on the location of the subsidence. This study demonstrates that the infrared camera can be used to assess the condition of the subsurface.

A Vertical Gravity Gradient Survey for Shallow Density Mapping (수직 중력 변화율 탐사 적용 사례)

  • Park, Yeong-Sue;Rim, Hyoung-Rae;Lim, Mu-Taek;Koo, Sung-Bon;Lee, Young-Chal
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.161-166
    • /
    • 2006
  • Vertical gravity gradient measurement offers greater structural resolution and detectability than gravity alone. Practical difficulties of field measurement of vertical gravity gradient have raised questions of its accuracy and utility. But, modern automated gravimeter of $1\;{\mu}Gal$ sensitivity makes it easier to measure vertical gradient with required accuracy. It is particularly effective to engineering and environmental problems which target shallow subsurface structure. This paper attempts to apply the vertical gravity gradient technique to high resolution density mapping. The method was generally reviewed and numerical inverse modeling was executed for comparing with conventional gravity. And actual vertical gravity gradient data surveyed overt karstic cavity area at Muan was analysed and interpreted.

  • PDF

Zeolites in the Volcaniclastics of Jeju Island (제주도 화산쇄설암의 불석광물)

  • Jeong, Gi-Young;Sohn, Young-Kwan;Jeon, Yong-Mun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.39-50
    • /
    • 2010
  • Zeolites were formed by the alteration of volcanic glass in the volcaniclastics including tuff cone/rings and subsurface Seoguipo Formation, Jeju Island. Phillipsite and analcime were identified by X-ray diffraction and electron microprobe analysis. Si/(Si+Al) atom ratios of analcime and phillipsite were similar to that of parent basaltic glass. In comparison with the simple chemistry of analcime, phillipsite showed a range of cavity cation compositions. Na is the major cavity cations of phillipsite in the Dangsanbong and Yongmeori tuffs bearing analcime, while K and Ca in core samples of Seoguipo Formation. Microtextural analysis by scanning electron microscope showed a general sequence that early phillipsite encrustification of pores was followed by later analcime infilling. Zeolites are abundant in the older tuff cone/rings but nearly absent in the younger ones.

Histological classification of canine ovarian cyst types with reference to medical history

  • Knauf, Yvonne;Kohler, Kernt;Knauf, Sascha;Wehrend, Axel
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.725-734
    • /
    • 2018
  • Ovaries of 21 bitches presented with gynecopathies were surgically removed and histologically examined. Standard histological, as well as immunohistochemical, classification of 193 cystic structures resulted in the classification of 72 cysts of subsurface epithelial structures (SES), 61 follicular cysts (FCs), 38 cystic rete ovarii (CRO), 13 lutein cysts (LCs), and 9 non-classifiable cysts (NCCs). In addition to the histological classification, results were interpreted according to subject medical history, clinical examination outcome, and macroscopic observations during ovariohysterectomy. Dogs with ovarian cysts (OCs) and associated reproductive perturbations were mostly nulliparous, of large breed, and had an average of $9.5{\pm}3$ years. Prolonged or shortened inter-estrus intervals of past heats, however, seemed to be relatively low-risk factors for the development of OCs in dogs. Furthermore, we provide histological observations of a rarely seen canine LC including a degenerated oocyte in the central cavity.

Expansion ratio estimation of expandable foam grout using unit weight

  • WooJin Han;Jong-Sub Lee;Thomas H.-K. Kang;Jongchan Kim
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.471-479
    • /
    • 2024
  • In urban areas, appropriate backfilling design is necessary to prevent surface subsidence and subsurface cavities after excavation. Expandable foam grout (EFG), a mixture of cement, water, and an admixture, can be used for cavity filling because of its high flowability and volume expansion. EFG volume expansion induces a porous structure that can be quantified by the entrapped air content. This study observed the unit weight variations in the EFG before and after expansion depending on the various admixture-cement and water-cement ratios. Subsequently, the air content before and after expansion and the gravimetric expansion ratios were estimated from the measured unit weights. The air content before expansion linearly increased with an increase in the admixture-cement ratio, resulting in a decrease in the unit weight. The air content after the expansion and the expansion ratio increased nonlinearly, and the curves stabilized at a relatively high admixture-cement ratio. In particular, a reduced water-cement ratio limits the air content generation and expansion ratio, primarily because of the short setting time, even at a high admixture-cement ratio. Based on the results, the relationship between the maximum expansion ratio of EFG and the mixture ingredients (water-cement and admixture-cement ratios) was introduced.

A Microgravity for Mapping and Monitoring the Subsurface Cavities (지하 공동의 탐지와 모니터링을 위한 고정밀 중력탐사)

  • Park, Yeong-Sue;Rim, Hyoung-Rae;Lim, Mu-Taek;Koo, Sung-Bon
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.383-392
    • /
    • 2007
  • Karstic features and mining-related cavities not only lead to severe restrictions in land utilizations, but also constitute serious concern about geohazard and groundwater contamination. A microgravity survey was applied for detecting, mapping and monitoring karstic cavities in the test site at Muan prepared by KIGAM. The gravity data were collected using an AutoGrav CG-3 gravimeter at about 800 stations by 5 m interval along paddy paths. The density distribution beneath the profiles was drawn by two dimensional inversion based on the minimum support stabilizing functional, which generated better focused images of density discontinuities. We also imaged three dimensional density distribution by growing body inversion with solution from Euler deconvolution as a priori information. The density image showed that the cavities were dissolved, enlarged and connected into a cavity network system, which was supported by drill hole logs. A time-lapse microgravity was executed on the road in the test site for monitoring the change of the subsurface density distribution before and after grouting. The data were adjusted for reducing the effects due to the different condition of each survey, and inverted to density distributions. They show the change of density structure during the lapsed time, which implies the effects of grouting. This case history at the Muan test site showed that the microgravity with accuracy and precision of ${\mu}Gal$ is an effective and practical tool for detecting, mapping and monitoring the subsurface cavities.

Deep-learning-based GPR Data Interpretation Technique for Detecting Cavities in Urban Roads (도심지 도로 지하공동 탐지를 위한 딥러닝 기반 GPR 자료 해석 기법)

  • Byunghoon, Choi;Sukjoon, Pyun;Woochang, Choi;Churl-hyun, Jo;Jinsung, Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.189-200
    • /
    • 2022
  • Ground subsidence on urban roads is a social issue that can lead to human and property damages. Therefore, it is crucial to detect underground cavities in advance and repair them. Underground cavity detection is mainly performed using ground penetrating radar (GPR) surveys. This process is time-consuming, as a massive amount of GPR data needs to be interpreted, and the results vary depending on the skills and subjectivity of experts. To address these problems, researchers have studied automation and quantification techniques for GPR data interpretation, and recent studies have focused on deep learning-based interpretation techniques. In this study, we described a hyperbolic event detection process based on deep learning for GPR data interpretation. To demonstrate this process, we implemented a series of algorithms introduced in the preexisting research step by step. First, a deep learning-based YOLOv3 object detection model was applied to automatically detect hyperbolic signals. Subsequently, only hyperbolic signals were extracted using the column-connection clustering (C3) algorithm. Finally, the horizontal locations of the underground cavities were determined using regression analysis. The hyperbolic event detection using the YOLOv3 object detection technique achieved 84% precision and a recall score of 92% based on AP50. The predicted horizontal locations of the four underground cavities were approximately 0.12 ~ 0.36 m away from their actual locations. Thus, we confirmed that the existing deep learning-based interpretation technique is reliable with regard to detecting the hyperbolic patterns indicating underground cavities.