• Title/Summary/Keyword: Subsurface

Search Result 1,544, Processing Time 0.031 seconds

Regression Modeling of Water-balance in Watershed (유역(流域) 물 수지(收支)의 회귀모형화(回歸模型化))

  • Kim, Tai Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.324-333
    • /
    • 1983
  • Modeling of longterm runoff is theoritically based on waterbalance analysis. Simplified equation of water balance with rainfall, evapotranspiration and soil moisture storage could be formulated into regression model with variables of rainfall, pan evaporation and previous-month streamflow. The hydrologic response of water shed could be represented lumpedly, qualitatively and deductively by regression coefficients of water-balance regression model. Characteristics of regression modeling of water-balance were summarized as follows; 1. Regression coefficient $b_1$ represents the rate of direct runoff component of precipitation. The bigger the drainage area, the less $b_1$ value. This means that there are more losses of interception, surface detension and transmission in the downstream watershed. 2. Regression coefficient $b_2$ represents the rate of baseflow due to changes of soil moisture storage. The bigger the drainage area and the milder the watershed slope, the bigger b, value. This means that there are more storage capacity of watershed in mild downstream watershed. 3. Regression coefficient $b_3$ represents the rate of watershed evaporation. This depends on the s oil type, soil coverage and soil moisture status. The bigger the drainage area, the bigger $b_3$ value. This means that there are more watershed evaporation loss since more storage of surface and subsurface water would be in down stream watershed. 4. It was possible to explain the seasonal variation of streamflow reasonably through regress ion coefficients. 5. Percentages of beta coefficients what is a relative measure of the importance of rainfall, evaporation and soil moisture storage to month streamflow are approximately 89%, 9% and 11% respectively.

  • PDF

Two-Dimensional Interpretation of Ear-Remote Reference Magnetotelluric Data for Geothermal Application (심부 지열자원 개발을 위한 원거리 기준점 MT 탐사자료의 2차원 역산 해석)

  • Lee, Tae-Jong;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.145-155
    • /
    • 2005
  • A two-dimensional (2-D) interpretation of MT data has been performed for the purpose of fracture detection for geothermal development. Remote stations have been operated in Kyushu, Japan (480 km apart) as well as in Korea (60 km and 165 km apart in 2002 and 2003 data set, respectively). Apparent resistivity and phase curves calculated by remote processing with the Japan remote data showed enough quality for 2-D inversion for the whole frequency range. Remote reference processing with Korea remote reference data also showed quite good continuity in apparent resistivity and phase curves except some noisy frequency bands; around the power frequency, 60 Hz, and around the dead band $10^{-1}Hz\;Hz\;\~1\;Hz$, where the natural EM signal is known to be very weak. Even though the subsurface showed severe three-dimensional (3-D) characteristics in the survey area so that 2-D inversion by itself could not give enough information for deep geological structures, the 2-D inversion for the 5 survey lines showed several common features. The conductive semi-consolidate mudstone layer is dipping from north to south (about 500 m depth on the south and 200 m on the north most part of the survey area). The boundary between the low (L-2) and high (H-2) resistivity anomalies can be thought as a major fault with strike $N15^{\circ}E$, passing through the sites 206, 112 and 414. The shallow (< 1 km) conductive anomalies (L-4) seem to be fracture zones having strike E-W (at site 105) and $N60^{\circ}W$ (at site 434). And there exists a conductive layer in the western and west-southern part of the survey area in the depth below $2\~3\;km$, for which further investigation is to be needed.

Analysis of Unrest Signs of Activity at the Baegdusan Volcano (백두산 화산의 전조활동 분석 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Baegdusan volcano is one of the most active volcanoes in northeastern Asia, and the 10th century eruption was the most voluminous eruption in the world in recent 2,000 years. During the period from 2002 to 2005, volcanic earthquakes and abnormal surface distortions by suspected subsurface magma intrusion beneath the volcano were observed in the Baegdusan area. Seismic activity has gradually increased with earthquake swarms during 2002-2003 and hundreds of seismic event in a day, especially annual peak of 2,100 in 2003. Then the number of seismic activity has declined since 2006 to the background level in 1999-2001. According to the typical frequency of volcanic earthquakes in the Baegdusan volcano, the frequency distribution of typical volcanic earthquakes between 2002 and 2005 indicates that all the main frequency of the earthquakes basically falls down less than 5 Hz and 5-10 Hz. These events are all the VT-B and LP events caused by the shallow localized fracture and intrusion of magma. The horizontal displacement measurement by GPS during the period from 2000 to 2007 of the Baegdusan stratovolcano area indicates that an inflated process has been centered at the summit caldera since 2002. The displacement between 2002 and 2003 reached at a maximum value of 4 cm. After 2003, the deformation rate of the volcano continued to decrease with unusual variation during the period from 2006 to 2007. After 2003 the vertical displacement uplift rate falls down gradually but still keeps in an uplift trend in northern slope. It is generally believed that when $^3He/^4He(R)$ in a gas sample from a hot spring exceeds $^3He/^4He(R)$ in the atmosphere, it can be concluded that mantle-source. And temperatures of hot springs are rising steadily to $83^{\circ}C$. It is unrest signals at the Baegdusan, which is potentially active. The Baegdusan volcano is now in unrest status, there is eruption threat in the near future. Intensified monitoring and emergency response plan for volcanic risk mitigation are urgent for the volcano.

Numerical Simulation for Evaluation the Feasibility of Using Sand and Gravel Contaminated by Heavy Metals for Dam Embankment Materials (중금속으로 오염된 사력재의 댐축조 재료 활용 가능성 평가를 위한 수치 모델링)

  • Suk, Hee-Jun;Seo, Min-Woo;Kim, Hyoung-Soo;Lee, Jeong-Min
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.209-221
    • /
    • 2007
  • Numerical analysis was performed to investigate the effect of heavy metal contamination on neighboring environment in case a dam is constructed by using rockfill materials contaminated by heavy metals. The numerical simulation carried out in this research includes both subsurface flow and contaminant transport in the inside of the CFRD(Concrete Faced Rockfill Dam), using two commercial programs, SEEP2D and FEMWATER. The three representative cases of scenarios were chosen to consider a variety of cases occurring in a dam site; (1) Scenario 1 : no crack in the concrete face slab, (2) Scenario 2 : a crack In the upper part of face slab, and (3) Scenario 3 : a crack between plinth and face slab in the lower part of face slab. As a result of seepage analysis, the amount of seepage in scenario 2 was calculated as $14.31\sim14.924m^3/day$ per unit width, corresponding to the 1,000 times higher value than that in other scenarios. Also, in the simulation of contaminant transport by using FEMWATER, specified contaminant concentration of 13 ppb in main rockfill zone was set to consider continuous leakage from the rock materials. Through the analysis of contaminant transport, we found that elapsed times to take for the contaminant concentration of about 2 ppb to arrive at the end of a dam are as follows. Scenario 1 has the elapsed time of 55,000 years. In Scenario 2. it is 50 years. Finally, scenario 3 has 27,000 years. The rapid transport of the contaminant in scenario 2 was attributed to greater seepage flow by 500 times than other scenarios. Although, in case of upper crack in the face slab, it was identified that the contaminant might transport to the end of a dam within 100 years with about 2 ppb concentration, however, it happened that the contaminant was hardly transported out of the dam in other scenarios, which correspond to either no crack or a crack between plinth and face slab. In conclusion, the numerical analysis showed that the alternative usage of the contaminated sand and gravel as the dam embankment material can be one of the feasible methods with the assumption that the cracks in a face slab could be controlled adequately.

A Study on groundwater and pollutant recharge in urban area: use of hydrochemical data

  • Lee, Ju-Hee;Kwon, Jang-Soon;Yun, Seong-Taek;Chae, Gi-Tak;Park, Seong-Sook
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.119-120
    • /
    • 2004
  • Urban groundwater has a unique hydrologic system because of the complex surface and subsurface infrastructures such as deep foundation of many high buildings, subway systems, and sewers and public water supply systems. It generally has been considered that increased surface impermeability reduces the amount of groundwater recharge. On the other hand, leaks from sewers and public water supply systems may generate the large amounts of recharges. All of these urban facilities also may change the groundwater quality by the recharge of a myriad of contaminants. This study was performed to determine the factors controlling the recharge of deep groundwater in an urban area, based on the hydrogeochemical characteristics. The term ‘contamination’ in this study means any kind of inflow of shallow groundwater regardless of clean or contaminated. For this study, urban groundwater samples were collected from a total of 310 preexisting wells with the depth over 100 m. Random sampling method was used to select the wells for this study. Major cations together with Si, Al, Fe, Pb, Hg and Mn were analyzed by ICP-AES, and Cl, N $O_3$, N $H_4$, F, Br, S $O_4$and P $O_4$ were analyzed by IC. There are two groups of groundwater, based on hydrochemical characteristics. The first group is distributed broadly from Ca-HC $O_3$ type to Ca-C1+N $O_3$ type; the other group is the Na+K-HC $O_3$ type. The latter group is considered to represent the baseline quality of deep groundwater in the study area. Using the major ions data for the Na+K-HC $O_3$ type water, we evaluated the extent of groundwater contamination, assuming that if subtract the baseline composition from acquired data for a specific water, the remaining concentrations may indicate the degree of contamination. The remainder of each solute for each sample was simply averaged. The results showed that both Ca and HC $O_3$ represent the typical solutes which are quite enriched in urban groundwater. In particular, the P$CO_2$ values calculated using PHREEQC (version 2.8) showed a correlation with the concentrations of maior inorganic components (Na, Mg, Ca, N $O_3$, S $O_4$, etc.). The p$CO_2$ values for the first group waters widely ranged between about 10$^{-3.0}$ atm to 10$^{-1.0}$ atm and differed from those of the background water samples belonging to the Na+K-HC $O_3$ type (<10$^{-3.5}$ atm). Considering that the p$CO_2$ of soil water (near 10$^{-1.5}$ atm), this indicates that inflow of shallow water is very significant in deep groundwaters in the study area. Furthermore, the P$CO_2$ values can be used as an effective parameter to estimate the relative recharge of shallow water and thus the contamination susceptibility. The results of our present study suggest that down to considerable depth, urban groundwater in crystalline aquifer may be considerably affected by the recharge of shallow water (and pollutants) from an adjacent area. We also suggest that for such evaluation, careful examination of systematically collected hydrochemical data is requisite as an effective tool, in addition to hydrologic and hydrogeologic interpretation.ion.ion.

  • PDF

The Extended Site Assessment Procedure Based on Knowledge of Biodegradability to Evaluate the Applicability of Intrinsic Remediation (자연내재복원기술(Intrinsic Remediation)적용을 위한 오염지역 평가과정 개발)

  • ;Robert M. Cowan
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.3-21
    • /
    • 1997
  • The remediation of contamiated sites using currently available remediation technologies requires long term treatment and huge costs, and it is uncertain to achieve the remediation goal to drop contamination level to either back-ground or health-based standards by using such technologies. Intrinsic remediation technology is the remediation technology that relies on the mechanisms of natural attenuation for the containment and elimination of contaminants in subsurface environments. Initial costs for the intrinsic remediation may be higher than conventional treatment technologies because the most comprehensive site assessment for intrinsic remediation is required. Total remediation cost, however may be the lowest among the presently employed technologies. The applicability of intrinsic remediation in the contaminated sites should be theroughly investigated to achieve the remedial goal of the technology. This paper provides the frame of the extended site assessment procedure based on knowledge of biodegradability to evaluate the applicability of intrinsic remediation. This site assessment procedure is composed of 5 steps such as preliminary site screening, assessment of the current knowledge of biodegradability, selecting the appropriate approach, analyzing the contaminant fate and transport and planning the monitoring schedule. In the step 1, followings are to be decided 1) whether to go on the the detailed assessment or not based on the rules of thumb concerning the biodegradability of organic compounds, 2) which protocol document is selected to follow for detailed site assessment according to the site characteristics, contaminants and the relative distance between the contamination and potential receptors. In the step 2, the database for biodegradability are searched and evaluated. In the step 3, the appropriate biodegradability pathways for the contaminated site is selected. In the step 4, the fate and transport of the contaminants at the site are analyzed through modeling. In the step 5, the monitoring schedule is planned according to the result of the modeling. Through this procedure, users may able to have the rational and systematic informations for the application of intrinsic remediation. Also the collected data and informations can be used as the basic to re-select the other remediation technology if it reaches a conclusion not to applicate intrinsic remediation technology at the site from the site assessment procedure.

  • PDF

Soil Characteristics Differences due to Slope Aspect of Sweet Persimmon Orchard Derived from Porphyritic Residuum (반암(斑岩)에서 유래(由來)된 잔적(殘績) 구릉지(丘陵地) 단감과원(果園)의 경사방향별(傾斜方向別) 토양특성(土壤特性) 연구(硏究))

  • Yun, Eul-Soo;Jung, Yeun-Tae;Kim, Jung-Kon;Son, Il-Soo;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 1993
  • To gain the basic informations on soil management practices by determination of the differences of soil genetic characteristics and the contents of soil moisture due to slope aspects of hilly land, this study was conducted at 1992 on sweet persimmon orchard soils derived from porphyry in southern of Korea. The results obtained were summarized as follows. The soils studied were belong to fine loamy family. The degree of soil development was greater in the north than other slope aspects and the solum thickness also the same. The soil chemical properties such as pH and exchangeable cations except for potassium were low generally in the orchards studied but the content of organic matter was lack in the summit and south aspect. The contents of Fe oxide and extractable Al were higher in the subsurface than surface. Fe, Al and clay indexes which indicate relative intensity of B horizon development were higher in the side slope than summit and the highest in the north slope. The rate of solum to B horizon was higher as about 1.5 for summit and west aspect which had thiner B horizon thickness compared to other aspect. North and west aspect had certainly more amount of soil water at drought season than other slope aspects and was lower the difference of soil water between the drought and wet seasons. Therfore, the soil management such as erosion control and irrigation at drought season should be practices differently due to slope aspect and soil chararteristics in the sloped land.

  • PDF

REMINERALIZATION DEPTH OF CPP-ACP ON DEMINERALIZATION HUMAN ENAMEL IN VITRO (탈회된 법랑질에서 CPP-ACP의 재광화 깊이)

  • Choi, Han-Ju;Choi, Yeong-Chul;Kim, Kwang-Chul;Choi, Sung-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.2
    • /
    • pp.278-286
    • /
    • 2008
  • Many studies regarding Casein phosphopeptides-amorphous calcium phosphate(CPP-ACP) have demonstrated the remineralization ability on the demineralized enamel surface. A question is still remained that how deep can the calcium (Ca) and phosphorus (P) ions supplied by the CPP-ACP paste penetrate into the enamel subsurface. The aims of this study were to measure the penetrating depth of Ca and P ions in the demineralized human enamel in vitro, and were to determine the amount and depth of Ca and P ions according to the duration. The amount and depth of Ca and P ions were measured by microscopic observation with Field Emission Scanning Electron Microscopy (FE-SEM; LEO SUPRA 55, Carl Zeiss, Germany) and Energy Dispersive X-ray Spectrometer (EDS; GENESIS 2000, EDAX, USA: Linescan of Calcium and Phosphorus). Freshly extracted four human 1st premolars were obtained from the Dept. of Pediatric Dent., Kyung Hee Univ. Buccal surfaces of the 1st premolars were covered with nail varnish to form a window on the middle third of buccal surface. All of the teeth with enamel windows were immersed in a solution of 0.1 M lactic acid, Carbopol C907 (carboxypolymethylene BF Goodrich, Cleveland, OH, USA) at pH 4.8, and then incubated for 7 days. Each tooth crown was sawn in half through the midline of buccal window along the long axis of premolar. The four blocks of premolars were immersed in a 10-times diluted solution of CPP-ACP paste (Tooth Mousse, GC Corp., Tokyo, Japan) for 1, 2, 3 and 5 weeks while the rests were immersed in a placebo solution (distilled water) for the same duration. Each specimen was embedded in epoxy resin, and was sectioned perpendicular to the window, using a water-cooled diamond blade saw. The spectrum density indices of Ca and P were measured in the sound, de- and remineralized enamels by FE-SEM and EDS. The Student's t test was performed to compare the Spectrum Density Indices (SDI) of sound, re-and demineralized enamels, and to compare the differences among the durations. Followings are the conclusion : 1. The penetration depth of the remineralizing ions (Ca & P) of CPP-ACP paste is related to the depth of demineralized enamel (approximately $1050{\sim}1350{\mu}m$). It is revealed that the penetration depth of both ions reaches full thickness of decalcification and even slightly into the sound enamel. 2. The Ca & P levels of remineralized enamels in 1, 2 weeks were significantly higher than those of the sound enamels (p<0.05). 3. No statistically significant difference of Ca & P levels was found in relation with the increasing duration of remineralization (p>0.05).

  • PDF

A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration (해양지중에 저장된 이산화탄소의 단층을 통한 누출 위험 평가에 관한 수치해석 연구)

  • Kang, Kwangu;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • To mitigate the greenhouse gas emission, many carbon capture and storage projects are underway all over the world. In Korea, many studies focus on the storage of $CO_2$ in the offshore sediment. Assurance of safety is one of the most important issues in the geological storage of $CO_2$. Especially, the assessment of possibility of leakage and amount of leaked $CO_2$ is very crucial to analyze the safety of marine geological storage of $CO_2$. In this study, the leakage of injected $CO_2$ through fault was numerically studied. TOUGH2-MP ECO2N was used to simulate the subsurface behavior of injected $CO_2$. The storage site was 150 m thick saline aquifer located 825 m under the continental shelf. It was assumed that $CO_2$ leak was happened through the fault located 1,000 m away from the injection well. The injected $CO_2$ could migrate through the aquifer by both pressure difference driven by injection and buoyancy force. The enough pressure differences made it possible the $CO_2$ to migrate to the bottom of the fault. The $CO_2$ could be leaked to seabed through the fault due to the buoyancy force. Prior to leakage of the injected $CO_2$, the formation water leaked to seabed. When $CO_2$ reached the seabed, leakage of formation water stopped but the same amount of sea water starts to flow into the underground as the amount of leaked $CO_2$. To analyze the effect of injection rate on the leakage behavior, the injection rate of $CO_2$ was varied as 0.5, 0.75, and $1MtCO_2/year$. The starting times of leakage at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 11.3, 15.6 and 23.2 years after the injection, respectively. The leakage of $CO_2$ to the seabed continued for a period time after the end of $CO_2$ injection. The ratios of total leaked $CO_2$ to total injected $CO_2$ at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 19.5%, 11.5% and 2.8%, respectively.

Geomagnetic Field Distribution in the Korean Peninsula by Spherical Harmonic Analysis (구면조화해석(球面調和解析)에 의(依)한 한반도내(韓半島內)의 지구자기장(地球磁氣場)의 분포(分布)에 관(關)한 연구(硏究))

  • Min, Kyung Duck;Lee, Sunhee
    • Economic and Environmental Geology
    • /
    • v.12 no.2
    • /
    • pp.95-104
    • /
    • 1979
  • The position of any point on the earth's surface can be. represented in the spherical coordinates by surface spherical harmonics. Since geomagnetic field is a function of position on the earth, it can be also expressed by spherical harmonic analysis as spherical harmonics of trigonometric series of $a_m({\theta})$ cos $m{\phi}$ and $b_m({\theta})$ sin $m{\phi}$. Coefficients of surface spherical harmonics, $a_m({\theta})$ and $b_m({\theta})$, can be drawn from the components of the geomagnetic field, declination and inclination, and vice versa. In this paper, components of geomagnetic field, declination and inclination in the Korean peninsula are obtained by spherical harmonic analysis using the Gauss coefficients calculated from the world-wide magnetic charts of 1960. These components correspond to the values of normal geomagnetic field having no disturbances of subsurface mass, structure, and so on. The vertical and total components offer the zero level for the interpretation of geomagnetic data obtained by magnetic measurement in the Korean peninsula. Using this zero level, magnetic anomaly map is obtained from the data of airborne magnetic. prospecting carried out during 1958 to 1960. The conclusions of this study are as follows; (1) The intensity of horizontal component of normal geomagnetic field in Korean peninsula ranges from $2{\times}10^4$ gammas to $2.45{\times}10^4$ gammas. It decreases about 500 with the increment of $1^{\circ}$ in latitude. Along the same. latitude, it increases 250 gammas with the increment of $1^{\circ}$ in longitude. (2) Intensity of vertical component ranges from $3.85{\times}10^4$ gammas to $5.15{\times}10^4$ gammas. It increases. about 1000 gammas with the increment of $1^{\circ}$ in latitude. Along the same latitude, it decreases. 150~240 gammas with the increment of $1^{\circ}$ in longitude. Decreasing rate is considerably larger in higher latitude than in lower latitude. (3) Total intensity ranges from $4.55{\times}10^4$ gammas to $5.15{\times}10^4$ gammas. It increases 600~700 gammas with the increament of $1^{\circ}$ in latitude. Along the same latitude, it decreases 10~90 gammas. with the increment of $1^{\circ}$ in longitude. Decreasing rate is considerably larger in higher latitude as the case of vertical component. (4) The declination ranges from $-3.8^{\circ}$ to $-11.5^{\circ}$. It increases $0.6^{\circ}$ with the increment of $1^{\circ}$ in latitude. Along the same latutude, it increases $0.6^{\circ}$ with the increment of l O in longitude. Unlike the cases of vertical and total component, the rate of change is considerably larger in lower latitude than in higher latitude. (5) The inclination ranges from $57.8^{\circ}$ to $66.8^{\circ}$. It increases about $1^{\circ}$ with 'the increment of $1^{\circ}$ in latitude Along the same latitude, it dereases $0.4^{\circ}$ with the increment of $1^{\circ}$ in longitude. (6) The Boundaries of 5 anomaly zones classified on the basis of the trend and shape of anomaly curves correspond to the geologic boundaries. (7) The trend of anomaly curves in each anomaly zone is closely related to the geologic structure developed in the corresponding zone. That is, it relates to the fault in the 3rd zone, the intrusion. of granite in the 1st and 5th zones, and mountains in the 2nd and 4th zones.

  • PDF