• Title/Summary/Keyword: Substructuring method

Search Result 82, Processing Time 0.029 seconds

Design Sensitivity Analysis of an Engine Mount System using the Multi-Domain FRF-based Substructuring Method (다중 전달함수합성 법을 이용한 엔진마운트 시스템의 설계민감도 해석)

  • 이두호;황우석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.237-244
    • /
    • 2002
  • Analyzing acoustic-structural systems such as automobiles and aircraft, the FRF-based substructuring (FBS) method is one of the most powerful tools. In this paper, a general procedure for the parametric sensitivity analysis of vibro-acoustic problems has been presented using the multi-domain FRF-based substructuring formulation. For an acoustic-structural system sub-structured by multiple domains, the substructuring formulation gives the reaction farces on the interface boundaries. The design sensitivity formula is obtained from the direct differentiation of the reaction force expression with respect to the design vector. As a practical application, the proposed design sensitivity formula is applied to an engine mount system of passenger car. An objective of the problem is to identify the most effective engine mounts and bushes in minimizing the interior noise over the concerned rpm range. The comparison of the sensitivity results with those of the finite difference method shows excellent agreement. In addition, stiffness modifications of the mounts and bushes identified through the design sensitivity analysis lead to a successful decrease of the interior noise. This results show usefulness of the present method very well.

Calculation of eigenvalue and eigenvector derivatives with the improved Kron's substructuring method

  • Xia, Yong;Weng, Shun;Xu, You-Lin;Zhu, Hong-Ping
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.37-55
    • /
    • 2010
  • For large-scale structures, the calculation of the eigensolution and the eigensensitivity is usually very time-consuming. This paper develops the Kron's substructuring method to compute the first-order derivatives of the eigenvalues and eigenvectors with respect to the structural parameters. The global structure is divided into several substructures. The eigensensitivity of the substructures are calculated via the conventional manner, and then assembled into the eigensensitivity of the global structure by performing some constraints on the derivative matrices of the substructures. With the proposed substructuring method, the eigenvalue and eigenvector derivatives with respect to an elemental parameter are computed within the substructure solely which contains the element, while the derivative matrices of all other substructures with respect to the parameter are zero. Consequently this can reduce the computation cost significantly. The proposed substructuring method is applied to the GARTEUR AG-11 frame and a highway bridge, which is proved to be computationally efficient and accurate for calculation of the eigensensitivity. The influence of the master modes and the division formations are also discussed.

A DUAL ITERATIVE SUBSTRUCTURING METHOD WITH A SMALL PENALTY PARAMETER

  • Lee, Chang-Ock;Park, Eun-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.461-477
    • /
    • 2017
  • A dual substructuring method with a penalty term was introduced in the previous works by the authors, which is a variant of the FETI-DP method. The proposed method imposes the continuity not only by using Lagrange multipliers but also by adding a penalty term which consists of a positive penalty parameter ${\eta}$ and a measure of the jump across the interface. Due to the penalty term, the proposed iterative method has a better convergence property than the standard FETI-DP method in the sense that the condition number of the resulting dual problem is bounded by a constant independent of the subdomain size and the mesh size. In this paper, a further study for a dual iterative substructuring method with a penalty term is discussed in terms of its convergence analysis. We provide an improved estimate of the condition number which shows the relationship between the condition number and ${\eta}$ as well as a close spectral connection of the proposed method with the FETI-DP method. As a result, a choice of a moderately small penalty parameter is guaranteed.

Sensitivity Analysis of Engine Mount System using FRF-based Substructuring Method (전달함수합성법을 이용한 엔진마운트계의 민감도 해석)

  • Lee, Du-Ho;Hwang, U-Seok;Kim, Chan-Muk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.153-160
    • /
    • 2001
  • A general procedure for the design sensitivity analysis of structural dynamic problems has been presented in frame of the FRF-based substructuring formulation. For a system response function, the proposed method gives a parametric design sensitivity formula in terms of the partial derivatives of the connection element properties and the transfer matrix of the subsystems. The derived design sensitivity formula is applied to an engine mount system. An interior noise problem in the passenger car is analyzed using the FRF-based substructuring method and the proposed formulation is adopted to study the response variations with respect to the dynamic characteristics of the engine mounts and the bushes. To obtain the FRFs, a finite element model is built for the engine mount structures, and test data is used for the trimmed body including cabin cavity. The comparison of sensitivities derived by the proposed method and the finite difference method shows that the proposed method is efficient and accurate. The proposed sensitivity analysis method indicates effectively the most sensitive location to the interior noise among the engine mounts and the bushes.

Dynamic Analysis of Compressor Mounting Bracket using FRF-based Substructuring Method (전달함수합성법을 이용한 차량용 에어컨 컴프레서 브라켓의 동특성 해석)

  • Chung, Hong-Suk;Seo, Se-Young;Lee, Doo-Ho;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.194-200
    • /
    • 2000
  • Researches on the FRF-based substructuring method have been mainly focused on vibratory response analysis. Present study is concerned about the application of the method to the dynamic stress analysis of a compressor mounting bracket in a passenger car. This is performed by using reaction forces that can be obtained by the FRF-based substructuring method. The air-conditioner system, composed of a compressor, a bracket and a test jig, is analyzed by using the FRF-based substructuring method. The experimental and numerical FRFs are combined to calculate the system responses and reaction forces at the connection point. The dynamic reaction forces plugged into the bracket FE model to compute the compute the stresses of the bracket. Dynamic stresses by the present method are compared with those from FE model. The comparison shows possibility of practical usage of the method for the real problem.

  • PDF

Structural Optimization by Global-Local Approximations Structural Reanalysis based on Substructuring (부구조화 기반 전역-부분 근사화 구조재해석에 의한 구조최적화)

  • 김태봉;서상구;김창운
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.120-131
    • /
    • 1997
  • This paper presents an approximate reanalysis methods of structures based on substructuring for an effective optimization of large-scale structural systems. In most optimal design procedures the analysis of the structure must be repeated many times. In particular, one of the main obstacles in the optimization of structural systems are involved high computational cost and expended long time in the optimization of large-scale structures. The purpose of this paper is to evaluate efficiently the structural behavior of new designs using information from previous ones, without solving basic equations for successive modification in the optimal design. The proposed reanalysis procedure is combined Taylor series expansions which is a local approximation and reduced basis method which is a global approximation based on substructuring. This technique is to choose each of the terms of Taylor series expansions as the basis vector of reduced basis method in substructuring system which is one of the most effective analysis of large -scale structures. Several numerical examples illustrate the effectiveness of the solution process.

  • PDF

Finite Element Stress Analysis of Coil Springs using a Multi-level Substructuring Method I : Spring Super Element (다단계 부분구조법을 이용한 코일스프링의 유한 요소 응력해석 I : 스프링 슈퍼요소)

  • Kim, Jin-Young;Huh, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.138-150
    • /
    • 2000
  • This study is concerned with computerized multi-level substructuring methods and stress analysis of coil springs. The purpose of substructuring methods is to reduce computing time and capacity of computer memory by multiple level reduction of the degrees of freedom in large size problems which are modeled by three dimensional continuum finite elements. In this paper, a super element has been developed for stress analysis of coil springs. The spring super element developed has been examined with tension and torsion simulation of cylindrical bars for demonstrating its validity. The result shows that the super element enhances the computing efficiency while it does not affect the accuracy of the results and it is ready for application to the coil spring analysis.

  • PDF

Sensitivity Analysis using FRF-based Substructuring Method (전달함수합성법을 이용한 민감도 해석)

  • Lee, Doo-Ho;Hwang, Woo-Seok;Kim, Chan-Mook
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.602-606
    • /
    • 2000
  • A general procedure for the design sensitivity analysis of structural dynamic problems has been presented in frame of the FRF-based substructuring formulation. In the procedure, the direct differentiation method is used for the sensitivity formula. For a system response function, the proposed method gives a parametric design sensitivity formula in terms of the partial derivatives of the connection element properties and the transfer matrix of the subsystems. The derived design sensitivity formula is applied to a numerical example. The comparison of sensitivities derived by the proposed method and the finite difference method shows that the proposed method is efficient and accurate.

  • PDF

Control strategy for the substructuring testing systems to simulate soil-structure interaction

  • Guo, Jun;Tang, Zhenyun;Chen, Shicai;Li, Zhenbao
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1169-1188
    • /
    • 2016
  • Real-time substructuring techniques are currently an advanced experimental method for testing large size specimens in the laboratory. In dynamic substructuring, the whole tested system is split into two linked parts, the part of particular interest or nonlinearity, which is tested physically, and the remanding part which is tested numerically. To achieve near-perfect synchronization of the interface response between the physical specimen and the numerical model, a good controller is needed to compensate for transfer system dynamics, nonlinearities, uncertainties and time-varying parameters within the physical substructures. This paper presents the substructuring approach and control performance of the linear and the adaptive controllers for testing the dynamic characteristics of soil-structure-interaction system (SSI). This is difficult to emulate as an entire system in the laboratory because of the size and power supply limitations of the experimental facilities. A modified linear substructuring controller (MLSC) is proposed to replace the linear substructuring controller (LSC).The MLSC doesn't require the accurate mathematical model of the physical structure that is required by the LSC. The effects of parameter identification errors of physical structure and the shaking table on the control performance of the MLSC are analysed. An adaptive controller was designed to compensate for the errors from the simplification of the physical model in the MLSC, and from parameter identification errors. Comparative simulation and experimental tests were then performed to evaluate the performance of the MLSC and the adaptive controller.

Substructuring and Decoupling of Discrete Systems from Continuous System

  • Eun, Hee-Chang;Koo, Jae-Oh
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This study proposes analytical methods to establish the eigenfunction of continuous system due to substructuring and decoupling of discrete subsystems. The dynamic characteristics of updated continuous system are evaluated by the constraint effect of consistent deformation at the interfaces between two systems. Beginning with the dynamic equation for constrained discrete system, this work estimates the modal eigenmode function for the continuous system due to the addition or deletion of discrete systems. Numerical applications illustrate the validity and applicability of the proposed method.