• Title/Summary/Keyword: Substrate thickness

Search Result 1,924, Processing Time 0.037 seconds

Lifejcket-Integrated Antenna for Search and Rescue System (탐색 및 구조 시스템용 구명조끼 내장형 안테나)

  • Lim, Ji-Hun;Yang, Gyu-Sik;Jung, Sung-Hun;Park, Dong-Kook
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.367-371
    • /
    • 2014
  • When the crew or passengers fall into the water due to marine accident of vessel, it is very important to rescue them quickly. In the case of marine accidents, most people in distress have been wearing a lifejacket, so if the GPS and Cospas-Sarsat communication module will be integrated within the lifejacket, it is easy to rescue them. In this paper, development of the dual band lifejacket-integrated antenna for GPS and Cospas-Sarsat communication is discussed. The antenna with the FR-4 substrate of 0.2mm thickness for flexibility was designed that it can be fitted close to the shoulder of the life jacket and operate at 1.575GHz and 406MHz. The GPS communication antenna was implemented with a ring-slot antenna having a circular polarized characteristic and a meander type linear polarized antenna is used as Cospas-Sarsat communication. The two antennas are fed by a single microstrip line and an open stub is used to minimize the mutual interference between the two antennas. The performance of the fabricated antenna attached to the life vest is confirmed by the measurement of the return loss at GPS and Cospas-Sarsat frequency bands.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • Kim, Byeong-Seong;Lee, Jong-Un;Son, Gi-Seok;Choe, Min-Su;Lee, Dong-Jin;Heo, Geun;Nam, In-Cheol;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

Effects of the Storage Condition on the Chemical Components of the Fruit Bodies in Oyster Mushroom(Pleurotus ostreatus) (느타리버섯의 저장조건(貯藏條件)이 자실체(子實體)의 화학성분(化學成分)에 미치는 영향(影響))

  • Park, Jeong Sik;Kim, Seong Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.123-129
    • /
    • 1986
  • These studies were conducted to elucidate the effect of storage conditions on the changes of chemical components in fruit bodies of oyster mushroom(Pleurotus ostreatus), and the results obtained were as follows. 1. The fruit bodies of oyster mushroom sealed with polyethlene film 0.03 mm thickness maintained their freshness for 15 days at $1^{\circ}C$, 10 days at $5^{\circ}C$ and 3 days at $20^{\circ}C$. 2. The respiration rates of the fruit bodies grown in the rice-straw substrate was 29.7mg $CO_2/kg$ F.W/hr. at $1^{\circ}C$, 32.7mg at $5^{\circ}C$, and 46.3mg at $20^{\circ}C$ during the storage, respectively. The respiration rate showed the highest level at the second day during the storage. 3. The contents of total and reducing sugar during the storage of oyster mushroom rapidly increased at $5^{\circ}C$ until the fifth day following slowly decreased. 4. The content of protein in the oyster mushroom was reduced during the storage, while the free amino acid slightly increased. 5. The change of RNA and DNA contents during the storage of oyster mushroom showed inconsistency on the temperature and the storage period.

  • PDF

Irradiation enduced In-plane magnetization in Fe/MgO/Fe/Co multilayers

  • Singh, Jitendra Pal;Lim, Weon Cheol;Song, Jonghan;Kim, Jaeyeoul;Asokan, K.;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.188.1-188.1
    • /
    • 2015
  • For present investigation Fe/MgO/Fe/Co multilayer stack is grown on Si substrate using e-beam evaporation in ultrahigh vacuum. This stack is irradiated perpendicularly by 120 MeV $Ag^{8+}$ at different fluences ranging from $1{\times}10^{11}$ to $1{\times}10^{13}ions/cm^2$ in high vacuum using 15UD Pelletron Accelerator at Inter University Accelerator Centre, New Delhi. Magnetic measurements carried out on pre and post irradiated stacks show significant changes in the shape of perpendicular hysteresis which is relevant with previous observation of re-orientation of magnetic moment along the direction of ion trajectory. However increase in plane squareness may be due to the modification of interface structure of stacks. X-ray reflectivity measurements show onset of interface roughness and interface mixing. X-ray diffraction measurements carried out using synchrotron radiation shows amorphous nature of MgO and Co layer in the stack. Peak corresponding body centered Fe [JCPDS-06-0696] is observed in X-ray diffraction pattern of pre and post irradiated stacks. Peak broadening shows granular nature of Fe layer. Estimated crystallite size is $22{\pm}1nm$ for pre-irradiated stack. Crystallite size first increases with irradiation then decreases. Structural quality of these stacks was further studied using transmission electron microscopic measurements. Thickness from these measurements are 54, 36, 23, 58 and 3 nm respectively for MgO, Fe, MgO, Fe+Co and Au layers in the stack. These measurements envisage poor crystallinity of different layers. Interfaces are not clear which indicate mixing at interface. With increase fluence mixing and diffusion was increased in the stack. X-ray absorption spectroscopic measurements carried out on these stacks show changes of Fe valence state after irradiation along with change of O(2p)-metal (3d) hybridized state. Valence state change predicts oxide formation at interface which causes enhanced in-plane magnetization.

  • PDF

Studies on Photocatalytic Thin Films($TiO_2$, TiO-N) Manufactured by DC Magnetron Sputtering Method and it's Characteristics for Removal of Pollutants (DC 마그네트론 스퍼터링법을 이용한 광촉매박막($TiO_2$, TiO-N)제조 및 오염물질 제거에 관한 연구)

  • Jeong, Weon-Sang;Park, Sang-Weon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2005
  • [ $TiO_2$ ] was deposited by DC magnetron sputtering on glass surface under various sputtering parameters such as discharge power($0.6{\sim}5.2\;kW$, substrate temperature($R.T{\sim}350^{\circ}C$), Ar and $O_2$ flow ratio with $0{\sim}50\;sccm$($Ar+O_2$ 90 sccm) and about 1 mtorr of pressure. TiO-N thin film was prepared under same sputtering conditions for $TiO_2$ thin film except flow ratio($Ar+O_2+N_2$ 90 sccm). The sheet resistance of thin films deposited under these parameters was measured to analyze electronic characteristic and thin film's thickness(${\alpha}$-step), surface roughness(AFM) and formation construction(FE-SEM, XRD) were also measured to draw optimal sputtering parameters. In order to evaluate photo-activity of thin film($TiO_2$, TiO-N) made in optimal parameters for removal of pollutants, toluene among VOCs and Suncion Yellow among reactive dyes were chosen to probe organic compounds for photo-degradation. It was shown that the photo-catalytic thin films had a significant photo-activation for the chosen contaminants and especially TiO-N thin film showed maximum efficiency of 33% for toluene(5 ppm) removal in visible-light range.

Amorphous Lithium Lanthanum Titanate Solid Electrolyte Grown on LiCoO2 Cathode by Pulsed Laser Deposition for All-Solid-State Lithium Thin Film Microbattery (전고상 리튬 박막 전지 구현을 위해 펄스 레이저 증착법으로 LiCoO2 정극위에 성장시킨 비정질 (Li, La)TiO3고체 전해질의 특성)

  • 안준구;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.593-598
    • /
    • 2004
  • To make the all-solid-state lithium thin film battery having less than 1 fm in thickness, LiCoO$_2$ thin films were deposited on Pt/TiO$_2$/SiO$_2$/Si substrate as a function of Li/Co mole ratio and the deposition temperature by Pulsed Laser Deposition (PLD). Especially, LiCoO$_2$ thin films deposited at 50$0^{\circ}C$ with target of Li/Co=1.2 mole ratio show an initial discharge capacity of 53 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 67.6%. The microstructural and electrochemical properies of (Li, La)TiO3 thin films grown on LiCoO$_2$Pt/TiO$_2$/SiO$_2$/Si structures by Pulsed Laser Deposition (PLD) were investigated at various deposition temperatures. The thin films grown at 10$0^{\circ}C$ show an initial discharge capacity of approximately 51 $\mu$Ah/cm$^2$-$\mu$m and moreover show excellent discharge capacity retention of 90% after 100 cycles. An amorphous (Li, La)TiO$_3$ solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium thin film battery below 1 $\mu$m.

Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation

  • Arunachalam, Maheswari;Yun, Gun;Lee, Hyo Seok;Ahn, Kwang-Soon;Heo, Jaeyeong;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.424-432
    • /
    • 2019
  • Planar BiVO4 and 3 wt% Mo-doped BiVO4 (abbreviated as Mo:BiVO4) film were prepared by the facile spin-coating method on fluorine doped SnO2(FTO) substrate in the same precursor solution including the Mo precursor in Mo:BiVO4 film. After annealing at a high temperature of 450℃ for 30 min to improve crystallinity, the films exhibited the monoclinic crystalline phase and nanoporous architecture. Both films showed no remarkably discrepancy in crystalline or morphological properties. To investigate the effect of surface passivation exploring the Al2O3 layer, the ultra-thin Al2O3 layer with a thickness of approximately 2 nm was deposited on BiVO4 film using the atomic layer deposition (ALD) method. No distinct morphological modification was observed for all prepared BiVO4 and Mo:BiVO4 films. Only slightly reduced nanopores were observed. Although both samples showed some reduction of light absorption in the visible wavelength after coating of Al2O3 layer, the Al2O3 coated BiVO4 (Al2O3/BiVO4) film exhibited enhanced photoelectrochemical performance in 0.5 M Na2SO4 solution (pH 6.5), having higher photocurrent density (0.91 mA/㎠ at 1.23 V vs. reversible hydrogen electrode (RHE), briefly abbreviated as VRHE) than BiVO4 film (0.12 mA/㎠ at 1.23 VRHE). Moreover, Al2O3 coating on the Mo:BiVO4 film exhibited more enhanced photocurrent density (1.5 mA/㎠ at 1.23 VRHE) than the Mo:BiVO4 film (0.86 mA/㎠ at 1.23 VRHE). To examine the reasons, capacitance measurement and Mott-Schottky analysis were conducted, revealing that the significant degradation of capacitance value was observed in both BiVO4 film and Al2O3/Mo:BiVO4 film, probably due to degraded capacitance by surface passivation. Furthermore, the flat-band potential (VFB) was negatively shifted to about 200 mV while the electronic conductivities were enhanced by Al2O3 coating in both samples, contributing to the advancement of PEC performance by ultra-thin Al2O3 layer.

Development of On-Board Dual-Band Antenna for Small Walkie-Talkie (소형 무전기를 위한 On-Board 이중대역 안테나 개발)

  • Park, Young-bae;Lee, Sang-suck;Lee, Young-hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.885-894
    • /
    • 2015
  • In this paper, it can be applied to a walkie-talkie, the RFID / USN 920 MHz band(917~923.5 MHz) and WiFi 2.4GHz band(2.4~2.483 5GHz) return loss is 10 dB over the band, on-board dual band with omni-directional radiation characteristics is proposed. The basic structure designed antenna is used meander monopole antenna. It was used as double stubs and tabs for antenna designs that meet the criteria proposed. The double stub and the tab affects the reactance of the antenna to form a common-mode and differential-mode in the stub to improve the antenna characteristics and return loss in the bandwidth, gain and radiation characteristics. The system size of walkie-talkie is $52{\times}77mm^2$, the size of the antenna is limited to $52{\times}15mm^2$, the thickness of FR4 dielectric substrate is 0.8 mm, FR4 dielectric constant 4.4 is used. For experimental results, the return loss is measured more than 10 dB, the maximum gain is measured 1.95 dB, the maximum bandwidth is measured 360 MHz, the radiation characteristic is measured omni-directional. By a walkie-talkie terminal design applying the results of the paper, the handset's price competitiveness and production efficiency can be improved.

Characteristics and Fabrication of Thermal Oxidized-SnO2 (SnO2 열산화감지막의 제작 및 특성)

  • Kang, Bong-Hwi;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.342-349
    • /
    • 2002
  • New formation technique of metal oxide sensing film was proposed m this paper. Silicon wafer with Pt electrodes was used as a substrate for depositing metal Sn film. Metal Sn was deposited in the state of not continuous film but only island state. The samples were prepared to obtain the optimal condition of metal Sn deposition. The resistances of deposited Sn onto Pt electrodes amounted to $1\;k{\Omega}$, $5\;k{\Omega}$, $10\;k{\Omega}$ and $50\;k{\Omega}$, respectively. Also The sample with $1,500\;{\AA}$ thickness of Sn was prepared m order to compare sensing properties between conventional type and proposing type. After deposition of metal Sn, $SnO_2$ was formed by thermal oxidation method for 3 hrs. in $O_2$ ambient at $700^{\circ}C$. Surface morphology, crystal structure and surface roughness of oxidized-sensing film were examined by SEM, XRD, and AFM, respectively. From the results of these analyses, the optimal deposition condition of Sn was that the Pt electrode resistance became $10\;k{\Omega}(300\;{\AA})$. Also, the sensing characteristics of fabricated sensing film for various concentrations of butane, propane and carbon monoxide gases were measured at he operating temperatures of $250^{\circ}C$, $300^{\circ}C$ and $350^{\circ}C$, respectively. Although catalyst as not added to the sensing film, it has exhibited the high sensitivity to all the test gases.

Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing (열차폐 코팅층의 고온 열충격 시험후 ECT를 이용한 결함 평가)

  • Heo, Tae-Hoon;Cho, Youn-Ho;Lee, Joon-Hyun;Oh, Jeong-Seok;Lee, Koo-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.450-457
    • /
    • 2009
  • Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and $ZrO_2-8wt%Y_2O_3$ ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until $1000^{\circ}C$ and cool until $20^{\circ}C$. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of $Al_2O_3$ is formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating.