• Title/Summary/Keyword: Substrate system

Search Result 2,293, Processing Time 0.037 seconds

Cloning and Expression of the Cathepsin F-like Cysteine Protease Gene in Escherichia coli and Its Characterization

  • Joo, Han-Seung;Koo, Kwang-Bon;Park, Kyun-In;Bae, Song-Hwan;Yun, Jong-Won;Chang, Chung-Soon;Choi, Jang-Won
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.158-167
    • /
    • 2007
  • In this study, we have cloned a novel cDNA encoding for a papain-family cysteine protease from the Uni-ZAP XR cDNA library of the polychaete, Periserrula leucophryna. This gene was expressed in Escherichia coli using the T7 promoter system, and the protease was characterized after partial purification. First, the partial DNA fragment (498 bp) was amplified from the total RNA via RT-PCR using degenerated primers derived from the conserved region of cysteine protease. The full-length cDNA of cysteine protease (PLCP) was prepared via the screening of the Uni-ZAP XR cDNA library using the $^{32}P-labeled$ partial DNA fragment. As a result, the PLCP gene was determined to consist of a 2591 bp nucleotide sequence (CDS: 173-1024 bp) which encodes for a 283-amino acid polypeptide, which is itself composed of an 59-residue signal sequence, a 6-residue propeptide, a 218-residue mature protein, and a long 3'-noncoding region encompassing 1564 bp. The predicted molecular weights of the preproprotein and the mature protein were calculated as 31.8 kDa and 25 kDa, respectively. The results of sequence analysis and alignment revealed a significant degree of sequence similarity with other eukaryotic cysteine proteases, including the conserved catalytic triad of the $Cys^{90},\;His^{226},\;and\;Asn^{250}$ residues which characterize the C1 family of papain-like cysteine protease. The nucleotide and amino acid sequences of the novel gene were deposited into the GenBank database under the accession numbers, AY390282 and AAR27011, respectively. The results of Northern blot analysis revealed the 2.5 kb size of the transcript and ubiquitous expression throughout the entirety of the body, head, gut, and skin, which suggested that the PLCP may be grouped within the cathepsin F-like proteases. The region encoding for the mature form of the protease was then subcloned into the pT7-7 expression vector following PCR amplification using the designed primers, including the initiation and termination codons. The recombinant cysteine proteases were generated in a range of 6.3 % to 12.5 % of the total cell proteins in the E. coli BL21(DE3) strain for 8 transformants. The results of SDS-PAGE and Western blot analysis indicated that a cysteine protease of approximately 25 kDa (mature form) was generated. The optimal pH and temperature of the enzyme were determined to be approximately 9.5 and $35^{\circ}C$, respectively, thereby indicating that the cysteine protease is a member of the alkaline protease group. The evaluation of substrate specificity indicated that the purified protease was more active towards Arg-X or Lys-X and did not efficiently cleave the substrates with non-polar amino acids at the P1 site. The PLCP evidenced fibrinolytic activity on the plasminogen-free fibrin plate test.

Evaluation of Deterioration of Epoxy Primer for Steel Bridge Coating using Image Processing and Electrochemical Impedance Spectroscopy (화상처리 기법과 전기화학적 임피던스 분광법을 이용한 강교 도장용 에폭시 하도 도료의 열화 평가)

  • Lee, Chan Young;Lee, Sang Hun;Park, Jin Hwan
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.53-61
    • /
    • 2009
  • In this study, both evaluations by visual imaging for exterior view of coating and by EIS were executed for epoxy primer coated specimens deteriorated by accelerated test, and comparison and analysis were carried out for 2 evaluation methods. In the comparison between total damaged area ratio acquired by image processing method and deterioration point, higher deterioration points were appeared for rusted specimens than for non-rusted specimens. It is attributed that deterioration point per unit area ratio given for rust is higher than for peeling. In the comparison between total damaged area ratio and EIS result, impedance of coating was largely decreased as about TEX>$10^4{\Omega}{\cdot}cm^2$ or less when rust area ratio is more than about 0.1%, and blistering area ratio is more than about 3%. Charge transfer resistance ($R_{ct}$) and double layer capacitance ($C_{dl}$) values were appeared for all specimens except 2 ones, which shows that water is accumulated and steel substrate is corroded at coated film-steel interface. In the comparison between deterioration point and EIS result, more than 10 points as deterioration point were given for specimens of below $10^6{\Omega}{\cdot}cm^2$ of impedance at low frequency. For specimens deteriorated by NORSOK cyclic test, impedance was lowest of all, though deterioration point was not high. It is thought to be attributed that coating system and accelerated deterioration condition of cyclic tested specimens were different from those of main specimens. From the result, it is thought that coating resistance can be relatively more decreased than deterioration degree estimated from exterior view under more severe corrosion environment or in the present of more complex deterioration factors.

Growth of $CuGaSe_2$ single crystal thin film for solar cell development and its solar cell application (태양 전지용 $CuGaSe_2$ 단결정 박막 성장과 태양전지로의 응용)

  • Yun, Suk-Jin;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.252-259
    • /
    • 2005
  • Single crystal $CuGaSe_2$ layers were grown on thoroughly etched semi-insulating CaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuGaSe_2$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuGaSe_2$ thin films measured with Hall effect by Van der Pauw method are $4.87{\times}10^{17}cm^{-3}$ and $129cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.7998eV-(8.7489{\times}10^{-4}eV/K)T^2/(T+335K)$. The voltage, current density of maxiumun power, fill factor, and conversion, efficiency of $n-CdS/p-CuGaSe_2$, heterojunction solar cells under $80mW/cm^2$ illumination were found to be 0.41 V, $21.8mA/cm^2$, 0.75 and 11.17%, respectively.

Lifejcket-Integrated Antenna for Search and Rescue System (탐색 및 구조 시스템용 구명조끼 내장형 안테나)

  • Lim, Ji-Hun;Yang, Gyu-Sik;Jung, Sung-Hun;Park, Dong-Kook
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.367-371
    • /
    • 2014
  • When the crew or passengers fall into the water due to marine accident of vessel, it is very important to rescue them quickly. In the case of marine accidents, most people in distress have been wearing a lifejacket, so if the GPS and Cospas-Sarsat communication module will be integrated within the lifejacket, it is easy to rescue them. In this paper, development of the dual band lifejacket-integrated antenna for GPS and Cospas-Sarsat communication is discussed. The antenna with the FR-4 substrate of 0.2mm thickness for flexibility was designed that it can be fitted close to the shoulder of the life jacket and operate at 1.575GHz and 406MHz. The GPS communication antenna was implemented with a ring-slot antenna having a circular polarized characteristic and a meander type linear polarized antenna is used as Cospas-Sarsat communication. The two antennas are fed by a single microstrip line and an open stub is used to minimize the mutual interference between the two antennas. The performance of the fabricated antenna attached to the life vest is confirmed by the measurement of the return loss at GPS and Cospas-Sarsat frequency bands.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • Kim, Byeong-Seong;Lee, Jong-Un;Son, Gi-Seok;Choe, Min-Su;Lee, Dong-Jin;Heo, Geun;Nam, In-Cheol;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF

Magnetron Sputter Coating of Inner Surface of 1-inch Diameter Tube

  • Han, Seung-Hee;An, Se-Hoon;Song, In-Seol;Lee, Keun-Hyuk;Jang, Seong-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.135-135
    • /
    • 2015
  • Tubes are of extreme importance in industries as for fluid channels or wave guides. Furthermore, some weapon systems such as cannons use the tubes as gun barrels. To increase the service life of such tubes, a protective coating must be applied to the tubes' inner surface. However, the coating methods applicable to the inner surface of the tubes are very limited due to the geometrical restriction. A small-diameter cylindrical magnetron sputtering gun can be used to deposit coating layers on the inner surface of the large-bore tubes. However, for small-bore tubes with the inner diameter of one inch (~25 mm), the magnetron sputtering method can hardly be accommodated due to the space limitation for permanent magnet assembly. In this study, a new approach to coat the inner surface of small-bore tubes with the inside diameter of one inch was developed. Instead of using permanent magnets for magnetron operation, an external electro-magnet assembly was adopted around the tube to confine the plasma and to sustain the discharge. The electro-magnet was operated in pulse mode to provide the strong axial magnetic field for the magnetron operation, which was synchronized with the negative high-voltage pulse applied to the water-cooled coaxial sputtering target installed inside the tube. By moving the electro-magnet assembly along the tube's axial direction, the inner surface of the tube could be uniformly coated. The inner-surface coating system in this study used the tube itself as the vacuum chamber. The SS-304 tube's inner diameter was 22 mm and the length was ~1 m. A water-cooled Cu tube (sputtering target) of the outer diameter of 12 mm was installed inside of the SS tube (substrate) at the axial position. The 50 mm-long electro-magnet assembly was fed by a current pulse of 250 A at the frequency and pulse width of 100 Hz and 100 usec, respectively. The calculated axial magnetic field strength at the center was ~0.6 Tesla. The central Cu tube was synchronously driven by a HiPIMS power supply at the same frequency of 100 Hz as the electro-magnet and the applied pulse voltage was -1200 V with a pulse width of 500 usec. At 150 mTorr of Ar pressure, the Cu deposition rate of ~10 nm/min could be obtained. In this talk, a new method to sputter coat the inner surface of small-bore tubes would be presented and discussed, which might have broad industrial and military application areas.

  • PDF

Growth of Large Area BSTO Thin Films using Pulsed Laser Deposition (펄스레이저 증착법을 이용한 대면적 BSTO 박막의 성장)

  • Kang, Dae-Won;Kwak, Min-Hwan;Kang, Seong-Beom;Paek, Mun-Cheol;Choi, Sang-Kuk;Kim, Sung-Il;Ryu, Han-Cheol;Kim, Ji-Seon;Jeong, Se-Young;Chung, Dong-Chul;Kang, Kwang-Yong;Lee, Beong-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.249-249
    • /
    • 2009
  • We have grown large area BSTO($(Ba_{1-x}Sr_x)TiO_3$) thin films (x=0.4) on 2 inch diameter MgO (001) single crystal substrates using a pulse laser deposition(PLD) system. Substrate temperature and oxygen pressure in the deposition chamber, and the laser optics for ablating a target have been controlled to obtain the uniform thickness and preferred orientation of the films. Results of x-ray diffraction and rocking curve analysis revealed that the BSTO films were grown on MgO substrates with a preferred orientation (002), and the full width half maximum of the rocking curve was measured to be 0.86 degree at optimum condition. Roughness of the films have been measured to be $3.42{\AA}$ rms by using atomic force microscopy. We have successfully deposited the large area BSTO thin films of $4000{\AA}$ thickness on 50 mm diameter MgO substrates.

  • PDF

Development of On-Board Dual-Band Antenna for Small Walkie-Talkie (소형 무전기를 위한 On-Board 이중대역 안테나 개발)

  • Park, Young-bae;Lee, Sang-suck;Lee, Young-hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.885-894
    • /
    • 2015
  • In this paper, it can be applied to a walkie-talkie, the RFID / USN 920 MHz band(917~923.5 MHz) and WiFi 2.4GHz band(2.4~2.483 5GHz) return loss is 10 dB over the band, on-board dual band with omni-directional radiation characteristics is proposed. The basic structure designed antenna is used meander monopole antenna. It was used as double stubs and tabs for antenna designs that meet the criteria proposed. The double stub and the tab affects the reactance of the antenna to form a common-mode and differential-mode in the stub to improve the antenna characteristics and return loss in the bandwidth, gain and radiation characteristics. The system size of walkie-talkie is $52{\times}77mm^2$, the size of the antenna is limited to $52{\times}15mm^2$, the thickness of FR4 dielectric substrate is 0.8 mm, FR4 dielectric constant 4.4 is used. For experimental results, the return loss is measured more than 10 dB, the maximum gain is measured 1.95 dB, the maximum bandwidth is measured 360 MHz, the radiation characteristic is measured omni-directional. By a walkie-talkie terminal design applying the results of the paper, the handset's price competitiveness and production efficiency can be improved.

The Production of Chitosanoligosaccharides Using Chitosan Bead (기질의 담체화를 이용한 키토산올리고당의 생산)

  • 김승모
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.352-358
    • /
    • 2000
  • Preparation for the simplified separation of chitosandoligosaccharides from enzymatic hydrolysate was investigated. Two different types of chitosan beads as substrate were prepared as organic-based bead by W/O emulsion method and water-based bead by alkaline treatement. The average size of organic-based bead was $200{\mu}m$, and that of water based beads were $4000{\mu}m$, $100{\mu}m$, $30{\mu}m$, in diameter respectively. Enzyme stability was maintained over 80% at PH 6 after 24 hours. The optimal condition for the production of chitosanoligosaccharides was at pH 6.0, $50^{\circ}C$ and 40U (200U/g-chitosan) According to final oligosaccharide concentration water-based bed showed the similar result with that of organic-based bead even through it had smaller surface area attacked by chitosanse than that of organic-based bead. It is probable that the structure of water-based chitosan bead was looser than that of organic-based bead so enzyme penetrated easily into the bead structure. For the oligosaccharide production versus surface area the different size of water-based beads was investigated, Maxiaml production yield was observed in the $30{\mu}m$ beads. Consequently the water-based chitosan bead was better than the organic-based bead in this reaction system.

  • PDF