• Title/Summary/Keyword: Substrate system

Search Result 2,293, Processing Time 0.03 seconds

Synthesis and Preliminary Evaluation of $9-(4-[^{18}F]Fluoro-3-hydroxymethylbutyl)$ Guanine $([^{18}F]FHBG)$ in HSV1-tk Gene Transduced Hepatoma Cell (9-(4-$[^{18}F]Fluoro-3-hydroxymethylbutyl)$guanine $([^{18}F]FHBG)$의 합성과 헤르페스 단순 바이러스 티미딘 키나아제 이입 간암 세포주에서의 기초 연구)

  • Moon, Byung-Seok;Lee, Tae-Sup;Lee, Myoung-Keun;Lee, Kyo-Chul;An, Gwang-Il;Chun, Kwon-Soo;Awh, Ok-Doo;Chi, Dae-Yoon;Choi, Chang-Woon;Lim, Sang-Moo;Cheon, Gi-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.218-227
    • /
    • 2006
  • Purpose: The HSV1-tk reporter gene system is the most widely used system because of its advantage that direct monitoring is possible without the introduction of a separate reporter gene in case of HSV1-tk suicide gene therapy. In this study, we investigate the usefulness of the reporter probe (substrate), $9-(4-[^{18}F]Fluoro-3-hydroxymethylbutyl)$guanine ($[^{18}F]FHBG$) for non-invasive reporter gene imaging using PET in HSV1-tk expressing hepatoma model. Materials and Methods: Radiolabeled FHBG was prepared in 8 steps from a commercially available triester. The labeling reaction was carried out by NCA nucleophilic substitution with $K[^{18}F]/K2.2.2.$ in acetonitrile using N2-monomethoxytrityl-9-14-(tosyl)-3-monomethoxytritylmethylbutyl]guanine as a precursor, followed by deprotection with 1 N HCl. Preliminary biological properties of the probe were evaluated with MCA cells and MCA-tk cells transduced with HSV1-tk reporter gene. In vitro uptake and release-out studies of $[^{18}F]FHBG$ were performed, and was analyzed correlation between $[^{18}F]FHBG$ uptake ratio according to increasing numeric count of MCA-tk cells and degree of gene expression. MicroPET scan image was obtained with MCA and MCA-tk tumor bearing Balb/c-nude mouse model. Results: $[^{18}F]FHBG$ was purified by reverse phase semi-HPLC system and collected at around 16-18 min. Radiothemical yield was about 20-25%) (corrected for decay), radiochemical purity was >95% and specific activity was around >55.5 $GBq/{\mu}\;mol$. Specific accumulation of $[^{18}F]FHBG$ was observed in HSV1-tk gene transduced MCA-tk cells but not in MCA cells, and consecutive 1 hour release-out results showed more than 86% of uptaked $[^{18}F]FHBG$ was retained inside of cells. The uptake of $[^{18}F]FHBG$ was showed a highly significant linear correlation ($R^2=0.995$) with increasing percentage of MCA-tk numeric cell count. In microPET scan images, remarkable difference of accumulation was observed for the two type of tumors. Conclusion: $[^{18}F]FHBG$ appears to be a useful as non-invasive PET imaging substrate in HSV1-tk expressing hepatoma model.

Metabolic Responses of Activated Sludge to Pentachlorophenol in SBR Systems

  • ;Larry D. Benefield
    • Journal of Environmental Science International
    • /
    • v.3 no.3
    • /
    • pp.273-284
    • /
    • 1994
  • The primary objective of this study was to examine the toxic effects of PCP on activated sludge and to analyze its metabolic responses while treating wastewater containing pentachlorophenol (PCP) in a sequencing batch reactor (SBR) system operating under different control strategies. This study was conducted in two phases 1 and 2 (8-hr and 12-hr cycles). Each phase was operated with two control strategies I and II. Strategy I (reactor 1) involved rapid addition (5 minutes to complete) of substrate to the reactor with continuous mixing but no aeration for 2 hours. Strategy ll (reactor 2) involved adding the feed continuously during the first 2 hours of the cycle when the system was mixed but not aerated. During both phases each reactor was operated at a sludge age of 15 days. The synthetic wastewater was used as a feed. The COD of the feed solution was about 380 mg/l. After the reference response for both reactors was established, the steady state response of each system was established for PCP feed concentrations of 0.1 mg/l, 1.0 mg/l, and 5.0 mg/l in SBR systems operating on both 8-hr and 12-hr cycles. Soluble COD removal was not inhibited at any feed PCP concentrations used. At 5.0 mg/l fined PCP concentration and in SBR systems operating on phase 2, the concentrations of MLVSS were decreased; selective pressure on the mixed biomass might be increased, narrowing the range of possible ecological responses; the settleability of activated sludge was poor; the SOURS were increased, showing that the systems were shocked. Nitrification was made to some extent at all concentrations of feed PCP in SBR systems operating on phase 2 whereas in SBR systems operating on phase 1 little nitrification was observed. Then, nitrification will be delayed as much as soluble COD removal is retarded due to PCP inhibition effects. Enhanced biological phosphorus removal occurring in the system operating with control strategy I during phase 1 of this work and in the presence of low concentrations of PCP was unreliable and might cease at anytime, whereas enhanced biological phosphorus removal occurring in the system operating with either control strategy I or II during phase 2 of this work and in the Presence of feed PCP concentrations up to 1.0 mg/l was reliable. When, however, such processes were exposed to 5.0 mg/l PCP dose, enhanced phosphorus removal ceased and never returned.

  • PDF

Characteristics on De-CH4/NOx according to Ceramic and Metal Substrates of SCR Catalysts for CNG Buses (CNG 버스용 SCR 촉매의 세라믹과 메탈 담체에 따른 De-CH4/NOx 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for about 95% of the automobiles in use. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. Natural gas is a clean fuel that emits few air pollutants and has been used mainly as a fuel for city buses. In the long term, we intend to develop a new NGOC/LNT+NGCO/SCR combined system that simultaneously reduces the toxic gases, $CH_4$ and NOx, emitted from CNG buses. The objective of this study is to investigate the characteristics of $de-CH_4/NOx$ according to the ceramic and metal substrates of the SCR (Selective Catalytic Reduction) catalysts mounted downstream of the combined system. The V and Cu-SCR catalysts did not affect the $CH_4$ oxidation reaction, the two NGOC/SCR catalysts each coated with two layers began to oxidize $CH_4$ at $400^{\circ}C$, and the amount of $CH_4$ emitted was reduced to about 20% of its initial value at about $550^{\circ}C$. The two NGOC/SCR catalysts each coated with two layers showed a negative (-) NOx conversion rate above $350^{\circ}C$. The ceramic-based combined system reached LOT50 at $500^{\circ}C$, which was about 20% higher in terms of the $CH_4$ conversion rate than the metal-based combined system, showing that the combined system of NGOC/LNT+Cu-SCR is a suitable combination.

Photocurrent study on the splitting of the valence band and growth of MgGa2Se4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 MgGa2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Kim, Hyejeong;Park, Hwangseuk;Bang, Jinju;Kang, Jongwuk;Hong, Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.283-290
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $MgGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.34 eV-(8.81{\times}10^{-4}eV/K)T^2/(T+251K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $MgGa_2Se_4$ have been estimated to be 190.6 meV and 118.8 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $MgGa_2Se_4$/GaAs epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-}$, $B_{1^-}$exciton for n = 1 and $C_{27}-exciton$ peaks for n = 27.

The study of growth and characterization of $AgInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)에 의한 $AgInSe_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.197-206
    • /
    • 1999
  • The stochiometric mixture of evaporating materials for the $AgInSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the $AgInSe_2$polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $C_0$ were 6.092 $\AA$ and 11.688 $\AA$, respectively. To obtain the single crystal thin films of AgInSe$_2$, the mixed crystal was deposited on thoroughly etched semi-insulator GaAs(100) substrate by HWE system. The source and substrate temperature were fixed to $610^{\circ}C$ and $450^{\circ}C$ respectively, and the thickness of the single thin films was obtained to 3.8 $\mu\textrm{m}$. The crystallization of single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray dirrfaction (DCXD). The Hall effect was measured by the method of van der Pauw and carrier density and mobility dependence on temperature were studied. The carrier density and mobility of $AgInSe_2$single crystal thin films deduced from Hall data are $9.58{\times}10^{22} electron/m^3,\; 3.42{\times}10^{-2}m^2/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $AgInSe_2$single crystal thin film, the spin orbit coupling $\Delta$So and the crystal field splitting $\Delta$Cr were obtained to 0.29 eV and 0.12 eV at 20 K respectively. From PL peaks measured at 20 K, 881.1 nm (1.4071 eV) and 882.4 nm (1.4051 eV) mean $E_x^U$ the upper polariton and $E_x^L$ the lower polariton of the free exciton $(E_x)$, also 884.1 nm (1.402 eV) express $I_2 peak of donor-bound exciton emission and 885.9 nm (1.3995 Ev) emerges $I_1$ peak of acceptor-bound exciton emission. In addition, the peak observed at 887.5 nm (1.3970 eV) was analyzed to be PL peak due to DAP.

  • PDF

Photocurrent study on the splitting of the valence band and growth of $ZnIn_{2}Se_{4}$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $ZnIn_{2}Se_{4}$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.217-224
    • /
    • 2008
  • A stoichiometric mixture of evaporating materials for $ZnIn_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $ZnIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnIn_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $9.41\times10^{16}cm^{-3}$ and $292cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $ZnIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.8622eV-(5.23\times10^{-4}eV/K)T^2/(T+775.5K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnIn_2Se_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnIn_2Se_4/GaAs$ epilayer. The three photo current peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-exciton$ for n = 1 and $C_{27}-exciton$ peaks for n = 27.

Effects of Encapsulation Layer on Center Crack and Fracture of Thin Silicon Chip using Numerical Analysis (봉지막이 박형 실리콘 칩의 파괴에 미치는 영향에 대한 수치해석 연구)

  • Choa, Sung-Hoon;Jang, Young-Moon;Lee, Haeng-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Recently, there has been rapid development in the field of flexible electronic devices, such as organic light emitting diodes (OLEDs), organic solar cells and flexible sensors. Encapsulation process is added to protect the flexible electronic devices from exposure to oxygen and moisture in the air. Using numerical simulation, we investigated the effects of the encapsulation layer on mechanical stability of the silicon chip, especially the fracture performance of center crack in multi-layer package for various loading condition. The multi-layer package is categorized in two type - a wide chip model in which the chip has a large width and encapsulation layer covers only the chip, and a narrow chip model in which the chip covers both the substrate and the chip with smaller width than the substrate. In the wide chip model where the external load acts directly on the chip, the encapsulation layer with high stiffness enhanced the crack resistance of the film chip as the thickness of the encapsulation layer increased regardless of loading conditions. In contrast, the encapsulation layer with high stiffness reduced the crack resistance of the film chip in the narrow chip model for the case of external tensile strain loading. This is because the external load is transferred to the chip through the encapsulation layer and the small load acts on the chip for the weak encapsulation layer in the narrow chip model. When the bending moment acts on the narrow model, thin encapsulation layer and thick encapsulation layer show the opposite results since the neutral axis is moving toward the chip with a crack and load acting on chip decreases consequently as the thickness of encapsulation layer increases. The present study is expected to provide practical design guidance to enhance the durability and fracture performance of the silicon chip in the multilayer package with encapsulation layer.

Growth and Photocurrent Properties of CdIn2S4/GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy 법에 의한 CdIn2S4 단결정 박막의 성장과 광전류 특성)

  • Lee, Sang-Youl;Hong, Kwang-Joon;Park, Jin-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.309-318
    • /
    • 2002
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdIn_2S_4$ single crystal thin films measured with Hall effect by van der Pauw method are $9.01{\times}10^{16}\;cm^{-3}$ and $219\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7116\;eV-(7.74{\times}10^{-4}\;eV)T^2/(T+434)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2S_4$ have been estimated to be 0.1291 eV and 0.0248 eV, respectively, by means of the photocurrent spectra and the Hopfield quasi cubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}5$ states of the valence band of the $AgInS_2$/GaAs epilayer. The three photocurrent peaks observed at 10K areascribed to the $A_1$-, $B_1$-, and C1-exciton peaks for n = 1.

Growth and optical properties for MgGa2Se4 single crystal thin film by hot wall epitaxy (Hot wall epitaxy법에 의한 MgGa2Se4 단결정 박막 성장과 광학적 특성)

  • Moon, Jong-Dae;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.99-104
    • /
    • 2011
  • A stoichiometric mixture of evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. The crystal structure of these compounds has a rhombohedral structure with lattice constants $a_0=3.953\;{\AA}$, $c_0=38.890\;{\AA}$. To obtain the single crystal thin films, $MgGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of $MgGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method were $6.21{\times}10^{18}\;cm^{-3}$ and 248 $cm^2/v{\cdot}s$ at 293 K, respectively. The optical absorption of $MgGa_2Se_4$ single crystal thin films was investigated in the temperature range from 10 K to 293 K. The temperature dependence of the optical energy gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's equation, $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=2.34\;eV$, ${\alpha}=8.81{\times}10^{-4}\;eV/K$ and ${\beta}=251\;K$, respectively.

Growth and optical conductivity properties for MnAl2S4 single crystal thin film by hot wall epitaxy method (Hot Wall Epitaxy(HWE)법에 의한 MnAl2S4 단결정 박막 성장과 광전도 특성)

  • You, Sangha;Lee, Kijeong;Hong, Kwangjoon;Moon, Jongdae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.229-236
    • /
    • 2014
  • A stoichiometric mixture of evaporating materials for $MnAl_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $MnAl_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $MnAl_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.7920eV-5.2729{\times}10^{-4}eV/K)T^2/(T+786 K)$. In order to explore the applicability as a photoconductive cell, we measured the sensitivity (${\gamma}$), the ratio of photocurrent to dark current (pc/dc), maximum allowable power dissipation (MAPD) and response time. The results indicated that the photoconductive characteristic were the best for the samples annealed in S vapour compare with in Mn, Al, air and vacuum vapour. Then we obtained the sensitivity of 0.93, the value of pc/dc of $1.10{\times}10^7$, the MAPD of 316 mW, and the rise and decay time of 14.8 ms and 12.1 ms, respectively.