• Title/Summary/Keyword: Substrate stage

Search Result 357, Processing Time 0.027 seconds

A Study on Low Concentration Substrate Removal by Using the Aerated Submerged Biofilter (호기 생물막법에 의한 저농도 기질제거법에 관한 고찰)

  • 홍성철;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.2
    • /
    • pp.59-68
    • /
    • 1989
  • This study was performed employing the two stage aerated submerged biofilter of media pore size 1.5cm and 2cm, and infiuent substrate concentrations were 30.25mg COD/l, 50.1mg COD/l respectively. The purpose was to determine the treatment efficiency at the low concentration infiuent, reaction order and substrate flux with application of variable-order model that was presented by Rittmann and McCarty. . The results are as follows. 1. Treatment efficiency of 1st reactor was about BOD 82% and COD 76%, when effluent concentration was BOD 3.9 ~ 6.8, COD 7.1 ~ 12.5 mg/l, and this effluent concentration didn't satisfy the water quality grade I, II of river and lake. But as treated effluent of 1st reactor with 2nd reactor, we could achieve appropriate water quality, since instillation of 2nd reactor was needed. 2. Difference of media pore size between 1.5cm and 2cm didn't effect significantly to treatment efficiency and since this of 2nd reactor was about BOD 60%, COD 50%, an consideration of economic point of view should be carried out in field application. 3. Reaction order and substrate flux was varied 0.9851~0.9956 and 0.0028~0.0405 mg/$cm^{2} \cdot day$, and the substrate flux was increased as infiuent substrate concentration increased.

  • PDF

비전도성 에폭시를 사용한 RF-MEMS 소자의 웨이퍼 레벨 밀봉 실장 특성

  • 박윤권;이덕중;박흥우;송인상;박정호;김철주;주병권
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.129-133
    • /
    • 2001
  • In this paper, hermetic sealing was studied fur wafer level packaging of the MEMS devices. With the flip-chip bonding method, this B-stage epoxy sealing will be profit to MEMS device sealing and further more RF-MEMS device sealing. B-stage epoxy can be cured 2-step and hermetic sealing can be obtained. After defining $500{\mu}{\textrm}{m}$-width seal-lines on the glass cap substrate by screen printing, it was pre-baked at $90^{\circ}C$ for about 30 minutes. It was then aligned and bonded with device substrate followed by post-baked at $175^{\circ}C$ for about 30 minutes. By using this 2-step baking characteristic, the width and the height of the seal-line were maintained during the sealing process. The height of the seal-line was controlled within $\pm0.6${\mu}{\textrm}{m}$ and the strength was measured to about 20MPa by pull test. The leak rate of the epoxy was about $10^7$ cc/sec from the leak test.

  • PDF

Control of Glucose Concentration in a Fed-Batch Cultivation of Scutellaria baicalensis G. Plant Cells a Self-Organizing Fuzzy Logic Controller

  • Choi, Jeong-Woo;Cho, Jin-Man;Kim, Young-Kee;Park, Soo-Yong;Kim, Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.739-748
    • /
    • 2001
  • A self-organizing fuzzy logic controller using a genetic algorithm is described, which controlled the glucose concentration for the enhancement of flavonoid production in a fed-batch cultivation of Scutellaria baicalensis G. plant cells. The substrate feeding strategy in a fed-batch culture was to increase the flavonoid production by using the proposed kinetic model. For the two-stage culture, the substrate feeding strategy consisted of a first period with 28 g/I of glucose to promote cell growth, followed by a second period with 5 g/I of glucose to promote flavonoid production. A simple fuzzy logic controller and the self-organizing fuzzy logic controller using a genetic algorithm was constructed to control the glucose concentration in a fed-batch culture. The designed fuzzy logic controllers were applied to maintain the glucose concentration at given set-points of the two-stage culture in fed-batch cultivation. The experimental results showed that the self-organizing fuzzy logic controller improved the controller\`s performance, compared with that of the simple fuzzy logic controller. The specific production yield and productivity of flavonoids in the two-stage culture were higher than those in the batch culture.

  • PDF

Alignment System Development for producing OLED using Fourth-Generation Substrate

  • Park, Jae-Yong;Han, Seok-Yoon;Lee, Nam-Hoon;Choi, Jeong-Og;Shin, Ho-Seon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.873-878
    • /
    • 2008
  • Doosan Mecatec has developed alignment system for Organic Light-Emitting Diode (OLED) display production using large size substrate. In the present article, The alignment system between the substrate and the mask, which is a core technology for producing the OLED product using the fourth-generation substrate with $730{\times}920mm^2$ or more, will be described by dividing into a substrate loader, a magnet unit, a CCD camera, etc. The substrate loader is optimized through the simulation where the central portion of the substrate droops by about 1.5mm by clamping each of a long side (920mm direction) and a short side (730mm direction) thereof by 6 point and 4 point. A magnet unit using a sheet type of rubber magnet is constituted and a CCD camera model with the specifications capable of minimizing the errors between a clear image and the same image is selected. The system to which an upward evaporation technique of small molecular organic materials will be applied has been developed so that repeatability and position accuracy becomes ${\pm}1{\mu}m$ or less using an UVW type of stage. Also, the vision accuracy of the CCD camera becomes ${\pm}1{\mu}m$ or less and the align process TACT becomes 30sec. or less so that the final alignment accuracy between the substrate and the mask becomes ${\pm}3{\mu}m$ or less. In order to meet an extra-large glass substrate, an evaporation system using an extra-large AMOLED substrate has been developing through a vertical type of an alignment system.

  • PDF

Effects of Detention Time and Disc Speed on the Treatment Efficiencies of RBC (체류시간(滯留時間)과 원판회전속도(圓板回轉速度)가 회전원판생물막법(回轉圓板生物膜法)의 처리효율(處理効率)에 미치는 영향(影響))

  • Kim, Sang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.1-9
    • /
    • 1984
  • A mult-stage rotating biological contactor process was evaluated by using the mixtures of nightsoil and sewage as influent substrate. An emphasis was concentrated on the BOD removal efficiency at each stage of the process with respect to hydraulic detention times, rotating speeds of the disc and influent organic substrate concentrations. The results indicated that the process was found to be economically feasible when operated at hyduraulic detention time of 2 hours and disc rotating speed of 3 RPH. As to treatment efficiency, BOD removal efficiency of 40 to 50 percent could be obtained at the first stage regardless of influent organic substrate concentrations. The overall BOD removal efficiency of the process was found to be 88 to 90 percent at even high organic loading of $2.0kgBOD/m^3{\cdot}day$.

  • PDF

Thermal Stability and the Effect of Substrate Temperature on the Structural and Magnetic Properties of Pd/Co Multilayer Films (Pd/Co 다층박막의 구조 및 자기적 특성에 미치는 기판온도 및 열적안정성에 관한 연구)

  • 허용철;김상록;이성래;김창수
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.298-304
    • /
    • 1993
  • The effects of the substrate temperature and the Pd underlayer on the structure and the magnetic properties of Pd/Co multilayer films prepared by the thermal evaporation were studied. As the substrate temperature increases up to $150^{\circ}C$, the crystallinity of sublayers, (111) texture and the interface sharpness of Pd/Co multilayers were improved due to the enhanced mobility of adatoms. As results of that, the perpendicular and surface anisotropy energies were increased but the coercivity was decreased because the pinning sites of domain wall decreased due to the grain growth. The grain size of the multilayers increased with Pd underlyer thickness. Thermal degradation was enhanced at above $200^{\circ}C$ due to interdiffusion at the Pd/Co interface. The intensity of the main diffraction peak rapidly decayed in the initial stage of aging and then decreased slowly. The rapid change of the intensity in the initial stage was speculated to be due to the structural relaxation phenomena and the later stage change was due to the interdiffusion. The activation energy for the interdiffusion in Pd4/Co1 multilayers was 14.9 KCal/mole.K.

  • PDF

Cognitive Virtual Network Embedding Algorithm Based on Weighted Relative Entropy

  • Su, Yuze;Meng, Xiangru;Zhao, Zhiyuan;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1845-1865
    • /
    • 2019
  • Current Internet is designed by lots of service providers with different objects and policies which make the direct deployment of radically new architecture and protocols on Internet nearly impossible without reaching a consensus among almost all of them. Network virtualization is proposed to fend off this ossification of Internet architecture and add diversity to the future Internet. As an important part of network virtualization, virtual network embedding (VNE) problem has received more and more attention. In order to solve the problems of large embedding cost, low acceptance ratio (AR) and environmental adaptability in VNE algorithms, cognitive method is introduced to improve the adaptability to the changing environment and a cognitive virtual network embedding algorithm based on weighted relative entropy (WRE-CVNE) is proposed in this paper. At first, the weighted relative entropy (WRE) method is proposed to select the suitable substrate nodes and paths in VNE. In WRE method, the ranking indicators and their weighting coefficients are selected to calculate the node importance and path importance. It is the basic of the WRE-CVNE. In virtual node embedding stage, the WRE method and breadth first search (BFS) algorithm are both used, and the node proximity is introduced into substrate node ranking to achieve the joint topology awareness. Finally, in virtual link embedding stage, the CPU resource balance degree, bandwidth resource balance degree and path hop counts are taken into account. The path importance is calculated based on the WRE method and the suitable substrate path is selected to reduce the resource fragmentation. Simulation results show that the proposed algorithm can significantly improve AR and the long-term average revenue to cost ratio (LTAR/CR) by adjusting the weighting coefficients in VNE stage according to the network environment. We also analyze the impact of weighting coefficient on the performance of the WRE-CVNE. In addition, the adaptability of the WRE-CVNE is researched in three different scenarios and the effectiveness and efficiency of the WRE-CVNE are demonstrated.

Improvement of two stage sintering method by using graphite mould (Graphite mould의 사용에 의한 2단소성법의 개선에 관한 연구(투명 PLZT를 제작함에 있어서))

  • Park, Il-Kyu;Lee, Jae-Yeol;Paik, Dong-Su;Lee, Kae-Myung;Park, Chang-Yup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.05a
    • /
    • pp.88-91
    • /
    • 1988
  • In this paper, PLZT Ceramics were fabricated by two stage sintering method whose first stage vacuum hot pressing and second stage PbO atmosphere sintering. Using Graphite Mould instead of Alumina Mould in first stage prevented the adhision between PLZT substrate and the mould. The grain sizes of PLZT Ceramics were controlled by varying the hot pressing time and second sintering time.

  • PDF

CHARACTERISTICS OF BIOHYDROGEN PRODUCTION AND MICROBIAL COMMUNITY AS A FUNCTION OF SUBSTRATE CONCENTRATION

  • Youn, Jong-Ho;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2005
  • The feasibility of hydrogen production with a raw seed sludge through direct acclimation of feedstock was investigated at acidogenic stage, and methane was harvested at followed methanogenic stage in an anaerobic two-stage process. Hydrogen content was higher than 57% at all tested organic loading rates (OLRs) and the yield of hydrogen ranged from 1.5 to 2.4 mol H2/mol hexose consumed and peaked at 6 gVSl-1day-1. Normal butyrate and acetate were main volatile fatty acids (VFAs), whereas the concentration of propionate was insignificant. The hydrogen-producing bacteria, Clostridium thermosaccharolyticum, was detected with strong intensity at all tested organic loading rates (OLRs) by denaturing gradient gel electrophoresis (DGGE) of the polymerase chain reaction (PCR) analysis. From COD balance in the process, the fraction of the feed-COD converted to the hydrogen-COD at acidogenic stage ranged from 7.9% to 9.3% and peaked at 6 gVSl-1day-1, whereas the fraction of feed-COD converted to the methane-COD at methanogenic stage ranged from 66.2% to 72.3% and peaked at 3 gVSl-1day-1.

Efficient and Cost-Reduced Glucoamylase Fed-Batch Production with Alternative Carbon Sources

  • Luo, Hongzhen;Liu, Han;He, Zhenni;Zhou, Cong;Shi, Zhongping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.185-195
    • /
    • 2015
  • Glucoamylase is an important industrial enzyme. Glucoamylase production by industrial Aspergillus niger strain featured with two major problems: (i) empirical substrate feeding methods deteriorating the fermentation performance; and (ii) the high raw materials cost limiting the economics of the glucoamylase product with delegated specification. In this study, we first proposed a novel three-stage varied-rate substrate feeding strategy for efficient glucoamylase production in a 5 L bioreactor using the standard feeding medium, by comparing the changing patterns of the important physiological parameters such as DO, OUR, RQ, etc., when using different substrate feeding strategies. With this strategy, the glucoamylase activity and productivity reached higher levels of 11,000 U/ml and 84.6 U/ml/h, respectively. The performance enhancement in this case was beneficial from the following results: DO and OUR could be controlled at the higher levels (30%, 43.83 mmol/l/h), while RQ was maintained at a stable/lower level of 0.60 simultaneously throughout the fed-batch phase. Based on this three-stage varied-rate substrate feeding strategy, we further evaluated the economics of using alternative carbon sources, attempting to reduce the raw materials cost. The results revealed that cornstarch hydrolysate could be considered as the best carbon source to replace the standard and expensive feeding medium. In this case, the production cost of the glucoamylase with delegated specification (5,000 U/ml) could be saved by more than 61% while the product quality be ensured simultaneously. The proposed strategy showed application potential in improving the economics of industrial glucoamylase production.