• Title/Summary/Keyword: Substrate formulation

Search Result 47, Processing Time 0.026 seconds

Effect of brewers dried grain as a nutrient supplement in plastic vinyl bag cultivation of maitake (Grifola frondosa S. F. Gray) (잎새버섯 봉지재배시 영양원으로서 맥주박 효과)

  • Lee, Jae-Hong;Lee, Nam-Gil;Mun, Youn-Gi;Jeong, Tae-Sung;Kwon, Sun-Bae;Park, Young-Hak;Kim, In-Jong
    • Journal of Mushroom
    • /
    • v.14 no.2
    • /
    • pp.34-38
    • /
    • 2016
  • This study was performed to determine most appropriate mixed ratio of brewers dried grain to wheat bran as a nutrient supplement in the plastic vinyl bag cultivation of Grifola frondosa. In the examination of an appropriate nutrient source, the IV substrate formulation (80 : 10 : 10, oak sawdust : wheat bran : brewers dried grain) resulted in 71.6 days to harvest and the highest yield of 142.6 g/bag. On the other hand, the investigation of the optimal mixing ratio of beer waste to wheat bran showed that the III substrate formulation (80 : 5 : 15, oak sawdust : wheat bran : brewers dried grain) resulted in the least days to harvest (61.8 days), with the highest yield of 140.8 g/bag.

The Preparation of Mockeoseuk(China Fossil) Composite by Hybridization Technique and Evaluation of Its Efficacy (복합화기술을 응용한 목어석 복합체의 제조 및 이의 효능에 관한 연구)

  • Kwon, Sun-Sang;Yi, Seung-Hwan;Kim, Duck-Hee;Kim, Jun-Oh;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.3
    • /
    • pp.153-157
    • /
    • 2007
  • Mockeoseuk(China fossil) contains the various kinds of minerals and radiates far infrared light. In order to apply mockeoseuk to the cosmetic formulation, hybridization technique was adapted and modified by selecting a spherical silicone powder as substrate. The resultant composite improved the physical properties such as skin feeling and apparent color and still sustained the efficacy of mockeoseuk. In a clinical test, the cosmetic formulation with 10 wt% mockeoseuk composite raised the temperature of facial skin through enhancement of skin blood flow.

The Problem of Collinear Cracks in a Layered Half-Plane with a Functionally Graded Nonhomogeneous Interfacial Zone (비균질 구배기능 계면영역을 고려한 적층 만무한체의 동일선상 복수균열 해석)

  • Jin, Tae-Eun;Choe, Hyung-Jip;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1275-1289
    • /
    • 1996
  • The plane elasticity problem of collinear cracks in a layered medium is investigated. The medium is modeled as bonded structure constituted from a surface layer and a semi-infinite substrate. Along the bond line between the two dissimilar homegeneous constituents, it is assumed that as interfacial zone having the functionally graded, nonhomogeneous elastic modulus exists. The layered medium contains three collinear cracks, one in each constituent material oriented perpendicular to the nominal interfaces. The stiffness matrix formulation is utilized and a set of homogeneous conditions relevant to the given problem is readily satisfied. The proposed mixed boundary value problem is then represented in the form of a system of integral equations with Cauchy-type singular kernels. The stress intensity factors are defined from the crack-tip stress fields possessing the standard square-root singular behavior. The resulting values of stress intensity factors mainly address the interactions among the cracks for various crack sizes and material combinations.

A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate

  • Mohammad Khorasani;Luca Lampani;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.633-644
    • /
    • 2023
  • Taking a look at the previously published papers, it is revealed that there is a porosity index limitation (around 0.35) for the mechanical behavior analysis of the functionally graded porous (FGP) structures. Over mentioned magnitude of the porosity index, the elastic modulus falls below zero for some parts of the structure thickness. Therefore, the current paper is presented to analyze the vibrational behavior of the FGP Timoshenko beams (FGPTBs) using a novel refined formulation regardless of the porosity index magnitude. The silica aerogel foundation and various hydrothermal loadings are assumed as the source of external forces. To obtain the FGPTB's properties, the power law is hired, and employing Hamilton's principle in conjunction with Navier's solution method, the governing equations are extracted and solved. In the end, the impact of the various variables as different beam materials, elastic foundation parameters, and porosity index is captured and displayed. It is revealed that changing hygrothermal loading from non-linear toward uniform configuration results in non-dimensional frequency and stiffness pushing up. Also, Al - Al2O3 as the material composition of the beam and the porosity presence with the O pattern, provide more rigidity in comparison with using other materials and other types of porosity dispersion. The presented computational model in this paper hopes to help add more accuracy to the structures' analysis in high-tech industries.

Experimental Studies of Wrinkle Formation in the UV Cured Coating Around Film-Substrate Insterface (자외선 경화코팅 필름-기질 계면에서의 주름현상에 대한 연구)

  • Hong, Jin Hu;Lee, Haeng U
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.7
    • /
    • pp.480-484
    • /
    • 1994
  • The durability of UV radiation cured coatings near the film-substrate interface has been studied. Particularly, the influence of the reactive diluent and oligomer in the UV-cured urethane acrylate formulation on the wrinkle formation of coating films was investigated. Results showed that wrinkle resistance increases when DMTA loss peaks of coating network are broad and has shoulder. When modified aromatic urethane acrylate oligomer is used to replace the aliphatic one, resulting cured network provides coating film of high hardness and flexibility. Therefore, the high values of loss modulus as low temperature are considered to be the main reason for wrinkle resistance improvements. The SEM and instron data support above conclusion.

  • PDF

Simulating Bioremediation of Uranium-Contaminated Aquifers

  • ;Peter R. Jaffe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.161-166
    • /
    • 2002
  • Bioremediation of trace metals in groundwater may require the manipulation of redox conditions via the injection of a carbon source. To simulate the numerous biogeochemical processes that will occur during the bioremediation of trace-metal-contaminated aquifers, a reactive transport model has been developed. The model consists of a set of coupled mass balance equations, accounting for advection, hydrodynamic dispersion, and a kinetic formulation of the biological or chemical transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and trace metal contaminants of interest, uranium in this study. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species we then used by a modified version of MINTEQA2, which calculates the speciation/sorption and precipitation/dissolution of the species of interest under equilibrium conditions. Kinetics of precipitation/dissolution processes are described as being proportional to the difference between the actual and calculated equilibrium concentration.

  • PDF

EM Analysis Applied for Unclonnable PUF Modeling (복제 방지용 PUF 모델링을 적용한 전자계 해석)

  • Kim, Tae Yong;Lee, Hoon-jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.37-38
    • /
    • 2012
  • In this research, the application of PUF modeling which is configured to be doped oxide material on Si substrate and this oxide material is to prevent corrosion of the security chip device. It is to design device replication technology through applying the electromagnetic formulation and its analysis of a device and find ways to PUF design.

  • PDF

Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.545-554
    • /
    • 2020
  • The present paper explores nonlinear dynamical properties of piezo-magnetic beams based on a nonlocal refined higher-order beam formulation and piezoelectric phase effect. The piezoelectric phase increment may lead to improved vibrational behaviors for the smart beams subjected to magnetic fields and external harmonic excitation. Nonlinear governing equations of a nonlocal intelligent beam have been achieved based upon the refined beam model and a numerical provided has been introduced to calculate nonlinear vibrational curves. The present study indicates that variation in the volume fraction of piezoelectric ingredient has a substantial impact on vibrational behaviors of intelligent nanobeam under electrical and magnetic fields. Also, it can be seen that nonlinear free/forced vibrational behaviors of intelligent nanobeam have dependency on the magnitudes of induced electrical voltages, magnetic potential, stiffening elastic substrate and shear deformation.

Analysis of equivalent inductance in the coplanar waveguide discontinuities by boundary element method (경계요소법에 의한 코플래너 도파로 불연속의 등가 인덕턴스 해석)

  • 강연덕;이택경
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.6
    • /
    • pp.11-19
    • /
    • 1997
  • For the circuit modeling of th ecoplanar waveguide (CPW) discontinuities, th eequivalent inductance is analyzed via the 3-dimensional boundary element method. The proposed method utilizes the magnetic scalar potential to obtain the magnetic flux passing sthrough the air-dielectric interfaces of the coplanar waveguide. The boundary integral is simplified by use fo the symmetry when the substrate is composed of the nonmagnetic material. In the numerical analysis, linear basis function and the collocationscheme are employed. The short-end and the step discontinuities are cahracterized through the calculations of the equivalent inductance andd the capacitance. The present method avoids the usual vector formulation and is quite advantageous in the quasi-staic characterization of the CPW disconditnuities.

  • PDF

Preparation and Properties of UV Curable Hard Coating Materials on PET (자외선 경화형 고경도 PET 필름의 제조 및 특성)

  • Kim, Hyunjoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • UV curable transparent hard coating materials have been developed to improve the mechanical and optical properties of PET substrate. The coating materials were synthesized using various urethane acrylate oligomers, monomers, photo initiators, and leveling agents. The materials were coated on PET substrates and UV cured. The hard coated PET films were shown to have the good scratch resistance and transparency. When the urethane acrylate oligomer with more functional groups was introduced into the coating solution, the mechanical and optical properties were improved. However the higher concentration of 9-functional oligomer resulted in the decrease of workability. The addition of trimethylolpropane ethoxylate$(EO/OH)_9$ triacrylate(TMPETA) to coating solution improved the workability and properties. As a result, the UV cured film from the formulation of urethane acrylate oligomer with 9-functional groups, TMPETA as a monomer, IRACURE 754 as a photo initiator and BYK-340 as a leveling agent showed the best mechanical and optical properties in this study.