• Title/Summary/Keyword: Substrate cells temperature

Search Result 258, Processing Time 0.032 seconds

Nanocomposite Ni-CGO Synthesized by the Citric Method as a Substrate for Thin-film IT-SOFC

  • Wang, Zhenwei;Liu, Yu;Hashimoto, Shin-ichi;Mori, Masashi
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.782-787
    • /
    • 2008
  • Ni-ceria cermets have been extensively investigated as candidates for the anode in intermediate-temperature solid oxide fuel cells. We have used the citric method to synthesize nanocomposite powders consisting of NiO (Ni metal content: $40{\sim}60%$ by volume) highly dispersed in $Ce_{0.9}Gd_{0.1}O_{1.95}$ (CGO). The microstructure characteristics and sintering behaviors of the nanocomposites were investigated. No impurity phases were observed and the shrinkage of these substrates matched well with that of a CGO electrolyte with a specific surface area of $11\;m^2/g$. Densification of the CGO electrolyte layer to $<5\;{\mu}m$ thickness was achieved by co-firing the laminated electrolyte with the porous NiO-CGO substrate at $1400^{\circ}C$ for 6 h.

RF스퍼터링법으로 제작한 ZnO박막의 특성평가 (The Properties Characterization of ZnO Thin Film Grown by RF Sputtering)

  • 정세민;정광천;최유신;김도영;김철수;이준신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1433-1435
    • /
    • 1997
  • ZnO shows the properties of wide conductivity variation, high optical transmittance, and excellent piezoelectricity. Using these properties of ZnO, the material applications were extended to sensors, SAW filters, solar cells, and display devices. This paper investigated transmittance influencing factors for thin film ZnO grown by RF magnetron sputtering. The growth rate and structural investigation were carried out in conjunction with optical transmittance characteristics of thin film ZnO. The glass substrate temperature of $175^{\circ}C$ exhibited a preferential crystallization along (002) orientation. Transmittance of ZnO film deposited at the substrate temperature of $175^{\circ}C$ showed higher than 92%. An active sputter gas was investigated with a variation of $O_2$ partial pressure from 0 to 10% in an Ar atmosphere. ZnO film grown in 100% Ar gas shows that a reduced transmittance of 82% at the short wavelengths and decreased resistivity value. As the partial pressure of $O_2$ gas increased, the optical transmittance was increased above 90% at the short wavelengths, however, resistivity was drastically increased to higher than $10^4{\Omega}$-cm.

  • PDF

나노물질의 선택적 레이저소결을 이용한 유연전기소자 구현 연구현황 (Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication)

  • 고승환
    • 대한기계학회논문집B
    • /
    • 제35권5호
    • /
    • pp.533-538
    • /
    • 2011
  • 대부분의 유연전기소자는 플라스틱, 옷감, 종이와 같이 고온에 민감한 물질이기 때문에 열에 민감한 기판 위에 금속을 증착하고 패터닝할 수 있는 저온 공정의 개발이 필요하다. 최근 기존의 광식각과 진공증착 방법을 이용하지 않고 액상으로 금속 나노입자의 박막을 형성하고 선택적 레이저 소결을 이용하여 플라스틱에 열적손상을 최소화하고 고해상도의 금속 패터닝을 방법이 많은 연구가 활발히 진행되고 있다. 본 논문에서는 본 연구실에서 활발히 수행중인 나노물질의 선택적 레이저소결법을 이용하여 유연 디스플레이와 유연태양전지와 같은 유연전기소자의 개발 동향에 대해 알아보고 앞으로의 발전방향에 대해 논의한다.

ALD 공정을 이용한 플렉시블 유기태양전지용 투명전극 형성 (Fabrication of a Transparent Electrode for a Flexible Organic Solar Cell in Atomic Layer Deposition)

  • 송근수;김형태;유경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.121.2-121.2
    • /
    • 2011
  • Aluminum-doped Zinc Oxide (AZO) is considered as an excellent candidate to replace Indium Tin Oxide (ITO), which is widely used as transparent conductive oxide (TCO) for electronic devices such as liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and organic solar cells (OSCs). In the present study, AZO thin film was applied to the transparent electrode of a channel-shaped flexible organic solar cell using a low-temperature selective-area atomic layer deposition (ALD) process. AZO thin films were deposited on Poly-Ethylene-Naphthalate (PEN) substrates with Di-Ethyl-Zinc (DEZ) and Tri-Methyl-Aluminum (TMA) as precursors and $H_2O$ as an oxidant for the atomic layer deposition at the deposition temperature of $130^{\circ}C$. The pulse time of TMA, DEZ and $H_2O$, and purge time were 0.1 second and 20 second, respectively. The electrical and optical properties of the AZO films were characterized as a function of film thickness. The 300 nm-thick AZO film grown on a PEN substrate exhibited sheet resistance of $87{\Omega}$/square and optical transmittance of 84.3% at a wavelength between 400 and 800 nm.

  • PDF

EFFECT OF ANNEALING ON THE OPTICAL PROPERTY OF RF-SPUTTERED CdTe THIN FILM

  • Lee, Dong-Young;Lee, Soon-Il;Oh, Soo-Ghee
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.666-672
    • /
    • 1996
  • The optical property of CdTe thin film is important for applications such as the compound semiconductor type solar cells. CdTe films are prepared by RF sputtering at various substrate temperature between $25^{\circ}C$ and $300^{\circ}C$, then, annealed in argon gas environment at $400^{\circ}C$. The annealing process of the thin film caused variation in the film structure and the composition of films. The deformation of CdTe thin film was observed by X-ray diffractometry. After annealing, the grain size increased and the portion of the non-crystalline CdTe reduced. Futhermore, the structure of sputtered CdTe film grown at the substrate temperature more than $250^{\circ}C$ was enhanced in the (111) direction of zincblend structure. There was a discrepancy, in the spectroscopic ellipsometer spectrum, between the single crystal CdTe and the sputtered CdTe thin films, especially in the region over 3.2eV. An oxidation layer was found on the CdTe thin film by spectroscopic ellipsometry analysis.

  • PDF

플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정 (Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells)

  • 박진호;;;박준영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

ZnO 나노구조체를 이용한 염료감응형 태양전지의 광전효율 (Photovoltaic Performence of Dye-sensitized Solar Cells using ZnO nanostructures)

  • 이정관;천종훈;김나리;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • Due to the rapidly diminishing energy sources and higher energy production cost, the interest in dye-sensitized solar cells (DSSCs) has been increasing dramatically in recent years. A typical DSSC is constructed of wide band gap semiconductor electrode such as $TiO_2$ or ZnO that are anchored by light-harvesting sensitizer dyes and surrounded by a liquid electrolyte with a iodide ion/triiodide ion redox couple. DSSCs based on one-dimensional nano-structures, such as ZnO nanorods, have been recently attracting increasing attention due to their excellent electrical conductivity, high optical transmittance, diverse and abundant configurations, direct band gap, absence of toxicity, large exiton binding energy, etc. However, solar-to-electrical conversion performances of DSSCs composed of ZnO n-type photo electrode compared with that of $TiO_2$ are not satisfactory. An important reason for the low photovoltaic performance is the dissolution of $Zn^{2+}$ by the adsorption of acidic dye followed by the formation of agglomerates with dye molecules which could block the I-diffusion pathway into the dye molecule on the ZnO surface. In this paper, we prepared the DSSC with the ZnO electrode using the chemical bath deposition (CBD) method under low temperature condition (< $100^{\circ}C$). It was demonstrated that the ZnO seed layers played an important role on the formation of the ZnO nanostructures using CBD. To achieve truly low-temperature growth of the ZnO nanostructures on the substrates, a two-step method was developed and optimized in the present work. Firstly, ZnO seed layer was prepared on the FTO substrate through the spin-coating method. Secondly, the deposited ZnO seed substrate was immersed into an aqueous solution of 0.25M zinc nitrate hexahydrate and 0.25M hexamethylenetetramine at $90^{\circ}C$ for hydrothermal reaction several times.

  • PDF

직접탄소 연료전지용 LSM/GDC 공기극 지지체 제조 및 전기화학 특성 평가 (Fabrication and Electrochemical Characterization of LSM/GDC based Cathode Supported Direct Carbon Fuel Cells)

  • 빌랄 아메드;완디 와휴디;이승복;송락현;이종원;임탁형;박석주
    • 한국수소및신에너지학회논문집
    • /
    • 제24권3호
    • /
    • pp.230-236
    • /
    • 2013
  • In this study, successive coating and co-sintering techniques have been used to fabricate LSM/GDC based cathode supported direct carbon fuel cells. The porous LSM/GDC cathode substrate, dense, thin and crack free GDC and ScSZ layers as bi-layer electrolyte, and a porous Ni/ScSZ anode layer was obtained by co-firing at $1400^{\circ}C$. The porous structure of LSM/GDC cathode substrate, after sintering at $1400^{\circ}C$, was obtained due to the presence of GDC phase, which inhibits sintering of LSM because of its higher sintering temperature. The electrochemical characterization of assembled cell was carried out with air as an oxidant and carbon particles in molten carbonate as fuel. The measured open circuit voltages (OCVs) were obtained to be more than 0.99 V, independent of testing temperature. The peak power densities were 116, 195 and $225mWcm^{-2}$ at 750, 800 and $850^{\circ}C$, respectively.

Comparative Studies on Growth and Phosphatase Activity of Endolithic Cyanobacterial Isolates of Chroococcidiopsis from Hot and Cold Deserts

  • BANERJEE, MEENAKSHI;DEBKUMARI, SHARMA
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.125-130
    • /
    • 2005
  • The growth and phosphatase (phosphomonoesterase) activity of Chroococcidiopsis culture isolated from the cryptoendoliths of the Antarctic were compared with a similar isolate from the Arizona hot desert. Such cyanobacteria living inside rocks share several features with the immobilized cells produced in the laboratory. This study has relevance because the availability of phosphorus is a key factor influencing the growth of these cyanobacteria in nature, in such unique ecological niches as the hot and cold deserts. Phosphatase activity therefore is of particular importance for these organisms if they are to survive without any other source of phosphorus availability. Also, there is paucity of knowledge regarding this aspect of study in cyanobacterial cultures from these extreme environments. The salient feature of this study shows the importance of specific pH and temperatures for growth and phosphatase activity of both cultures, although there were marked differences between the two isolates. The pH and temperature optima for growth and phosphatase activity (PMEase) of Chroococcidiopsis 1 and 2 were 9.5, $240^{\circ}C$ and 8.5, $40^{\circ}C$ respectively. The $K_m and V_max$ values of cultured Chroococcidiopsis 1 showed lower affinity of PMEase for the substrate compared to the enzyme affinity of the same organism when found within the rocks; Chroococcidiopsis 2 and Arizona rocks containing the same alga however showed similar affinity of PMEase for the substrate. An interesting observation was the similarity in response of immobilized Chroococcidiopsis 1 culture and the same organism in the Antarctic rocks to low light and low temperature stimulation of PMEase. This thermal response seems to be related to the ability of the immobilized Antarctic isolate and the rocks to either cryoprotect the PMEase or undergo a change to save the enzyme from becoming nonfunctional under low temperatures. The free cells of Chroococcidiopsis 1 culture however did not show such responses.

Optical Properties Analysis of SiNx Double Layer Anti Reflection Coating by PECVD

  • Gong, Dae-Yeong;Park, Seung-Man;Yi, Jun-Sin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.149-149
    • /
    • 2010
  • The double-layer antireflection (DLAR) coatings have significant advantages over single-layer antireflection (SLAR) coatings. This is because they will be able to cover a broad range of the solar spectrum which would enhance the overall performance of solar cells. Moreover films deposited at high frequency are expected to show excellent and UV-stable passivation in the refractive index that we adopted. In this work, we present a novel DLAR coating using SiNx:H thin films with refractive indices 1.9 and 2.3 as the top and bottom layers. This approach is cost effective when compared to earlier DLAR coatings with two different materials. SiNx:H films were deposited by Plasma enhanced chemical vapor deposition (PECVD) technique using $SiH_4$, $NH_3$ and $N_2$ gases with flow rates 20~80sccm, 200sccm and 85 sccm respectively. The RF power, plasma frequency and substrate temperature for the deposition were 300W, 13.56 MHz and $450^{\circ}C$, respectively. The optimum thickness and refractive indices values for DLAR coatings were estimated theoretically using Macleod simulation software as 82.24 nm for 1.9 and 68.58 nm for 2.3 respectively. Solar cells were fabricated with SLAR and DLAR coatings of SiNx:H films and compared the cell efficacy. SiNx:H> films deposited at a substrate temperature of $450^{\circ}C$ and that at 300 W power showed best effective minority carrier lifetime around $50.8\;{\mu}s$. Average reflectance values of SLAR coatings with refractive indices 1.9, 2.05 and 2.3 were 10.1%, 9.66% and 9.33% respectively. In contrast, optimized DLAR coating showed a reflectance value as low as 8.98% in the wavelength range 300nm - 1100nm.

  • PDF