• 제목/요약/키워드: Substrate activation

검색결과 404건 처리시간 0.022초

이온화 클러스터 빔 증착의 박막 형성 기구에 관한 연구 (A Study on the Film-Formation Mechanism by Ionized Cluster Beam Deposition)

  • 신치범;이경호;황경순;문상흡;조원일;윤경석
    • 공업화학
    • /
    • 제7권3호
    • /
    • pp.464-472
    • /
    • 1996
  • 이온화 클러스터 빔 증착에 의한 박막 형성 기구를 연구하였다. 가속전압, 기판온도, 표면이동 활성화에너지, 임계핵 크기 등이 박막의 결정입자크기 및 표면 평활도에 미치는 영향을 조사하기 위하여 Monte-Carlo방법에 근거한 전산 모사 프로그램을 개발하였다. 클러스터의 운동에너지가 박막형성에 미치는 영향을 관찰함으로써 높은 가속전압이 입자들의 표면이동에너지를 증가시키며 단결정막의 생성을 용이하게 함을 알 수 있었다. 기판온도가 증가함에 따라 입자의 운동에너지 소산(dissipation)속도는 느려지고 따라서 결정입자의 크기가 커졌다. 이러한 효과는 임계핵 크기가 클수록 두드러졌다. 표면이동 활성화에너지는 입자와 기판간의 상호작용력과 운동에너지 소산속도에 영향을 미침이 발견되었다. 가속전압, 기판온도, 표면이동 활성화에너지는 박막의 평활도에 복합적인 영향을 미치는 것을 알 수 있었다.

  • PDF

Substrate Construes the Copper and Nickel Ions Impacts on the Mushroom Tyrosinase Activities

  • Gheibi, N.;Saboury, A.A.;Haghbeen, K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권5호
    • /
    • pp.642-648
    • /
    • 2006
  • Mushroom tyrosinase (MT) structural changes in the presence of $Cu ^{2+}$ and $Ni ^{2+}$ were studied separately. Far-UV CD spectra of the incubated MT with the either of the metal ions indicated reduction of the well-ordered secondary structure of the enzyme. Increasing in the maximum fluorescence emission of anilinonaphthalene-8-sulfonic acid (ANS) was also revealing partial unfolding caused by the conformational changes in the tertiary structure of MT. Thermodynamic studies on the chemical denaturation of MT by dodecyl trimethylammonium bromide (DTAB) showed decrease in the stability of MT in the presence of $Cu ^{2+}$ or $Ni ^{2+}$ using their activation concentrations. Both activities of MT were also assessed in the presence of different concentrations of these ions, separately, with various monophenols and their corresponding diphenols. Kinetic studies revealed that cresolase activity on p-coumaric acid was boosted in the presence of either of the metal ions, but inhibited when phenol, L-tyrosine, or 4-[(4-methylphenyl)azo]-phenol was substrate. Similarly, catecholase activity on caffeic acid was enhanced in the presence of $Cu ^{2+}$ or $Ni ^{2+}$, but inhibited when catechol, L-DOPA, or 4-[(4-methylbenzo)azo]-1,2-benzenediol was substrate. Results of this study suggest that both cations make MT more fragile and less active. However, the effect of the substrate structure on the MT allosteric behavior can not be ignored.

표면 활성화 처리가 비정질 규소 박막의 결정화에 미치는 영향 (The effect of the surface activation treatment on the crystallization of amorphous silicon thin film)

  • 이의석;김영관
    • 한국결정성장학회지
    • /
    • 제9권2호
    • /
    • pp.173-179
    • /
    • 1999
  • 본 연구에서는 비정질 규소 박막의 결정화를 촉진시키기 위하여 표면 활성화 처리의 영향을 관찰하였다. 표면 활성화 방법으로는 습식 연마법(Wet Blasting)과 Nd:YAG 레이저의 빔을 사용하였고, 700~$800^{\circ}C$에서 관상로 열처리를 행하여 고살 결정화에 미치는 영향을 보았다. 결정화 정도의 기준으로는 XRD 분석을 통해 얻은 (111) 피크강도를 이용하였으며, 결정의 품질을 분석하기 위해 Raman 분석을 행하였다. 결정화의 표면 형상에 대한 관찰은 주사전자 현미경(SEM)을 사용하였다. 본 실험 결과 표면 활성화 처리는 비정질 규소박막의 결정화를 촉진하고, 결정의 품질을 향상시키는 것으로 확인되었다. 습식 연마법(Wet Blasting)의 경루 2 Kgf/$\textrm{cm}^2$의 압력이 가장 효과적이었고, 레이저의 에너지는 100~200mJ/$\textrm{cm}^2$가 효과적이었다. 이것은 표면활성화처리를 통하여 비정질 실리콘 박막의 표면에 strain energy가 형성되어 결정화에 필요한 엔탈피에 영향을 미친 효과 때문으로 예상된다.

  • PDF

CH3OH/H2O 가스의 기상활성법을 이용한 다이아몬드 박막성장 과정에서의 OES분석 (OES Analysis for Diamond Film Growth by Vapor Activation Method Using CH3OH/H2O Gas)

  • 이권재;고재귀;신재수
    • 한국재료학회지
    • /
    • 제13권1호
    • /
    • pp.31-35
    • /
    • 2003
  • The intensity is measured as functions of both distance from filament to substrate and $CH_3$OH/($CH_3$OH+$H_2$O) ratio by OES(Optical Emission Spectroscopy) to investigate the effects of activation species such as $H_{\alpha}$, $H_{\beta}$, H$\Upsilon\;C_3$, CH on diamond film growth.$ H_{\alpha}$ increases as $CH_3$OH composition decreases, while CH increases as $CH_3$OH composition increases. The intensity of $H_{\alpha}$ decreases as the distance increases and that of CH increases as the distance increases. The intensities of other activation species of $H_{\beta}$, H$\Upsilon\;C_3$, do not vary as a function of measured position distance. It varies randomly. It means that various parameters for depositing diamond thin film can be explained by the intensity(density) change of activation species, as a function of the distance of the filament.

Bactericidal and wound disinfection efficacy of nanostructured titania

  • Azad, Abdul-Majeed;Aboelzahab, Asem;Goel, Vijay
    • Advances in materials Research
    • /
    • 제1권4호
    • /
    • pp.311-347
    • /
    • 2012
  • Infections are caused due to the infiltration of tissue or organ space by infectious bacterial agents, among which Staphylococcus aureus bacteria are clinically most relevant. While current treatment modalities are in general quite effective, several bacterial strains exhibit high resistance to them, leading to complications and additional surgeries, thereby increasing the patient morbidity rates. Titanium dioxide is a celebrated photoactive material and has been utilized extensively in antibacterial functions, making it a leading infection mitigating agent. In view of the property amelioration in materials via nanofication, free-standing titania nanofibers (pure and nominally doped) and nanocoatings (on Ti and Ti6Al4V implants) were fabricated and evaluated to assess their efficacy to mitigate the viability and growth of S. aureus upon brief (30 s) activation by a portable hand-held infrared laser. In order to gauge the effect of exposure and its correlation with the antibacterial activities, both isolated (only titania substrate) and simultaneous (substrate submerged in the bacterial suspension) activations were performed. The bactericidal efficacy of the IR-activated $TiO_2$ nanocoatings was also tested against E. coli biofilms. Toxicity study was conducted to assess any potential harm to the tissue cells in the presence of photoactivated materials. These investigations showed that the photoactivated titania nanofibers caused greater than 97% bacterial necrosis of S. aureus. In the case of titania-coated Ti-implant surrogates, the bactericidal efficacy exceeded 90% in the case of pre-activation and was 100% in the case of simultaneous-activation. In addition to their high bactericidal efficacy against S. aureus, the benignity of titania nanofibers and nanocoatings towards tissue cells during in-vivo exposure was also demonstrated, making them safe for use in implant devices.

Negative PR의 기밀 특성 (Hermetic Characteristics of Negative PR)

  • 최의정;선용빈
    • 반도체디스플레이기술학회지
    • /
    • 제5권2호
    • /
    • pp.33-36
    • /
    • 2006
  • Many issues arose to use the Pb-free solder as adhesive materials in MEMS ICs and packaging. Then this study for easy and simple sealing method using adhesive materials was carried out to maintain hermetic characteristic in MEMS Package. In this study, Hermetic characteristic using negative PR (XP SU-8 3050 NO-2) as adhesive at the interface of Si test coupon/glass substrate and Si test coupon/LTCC substrate was examined. For experiment, the dispenser pressure was 4 MPa and the $200\;{\mu}m{\Phi}$ syringe nozzle was used. 3.0 mm/sec as speed of dispensing and 0.13 mm as the gap between Si test coupon and nozzle was selected to machine condition. 1 min at $65^{\circ}C$ and 15 min at $95^{\circ}C$ as Soft bake, $200\;mj/cm^2$ expose in 365 nm wavelength as UV expose, 1 min at $65^{\circ}C$ and 6 min at $95^{\circ}C$ as Post expose bake, 60 min at $150^{\circ}C$ as hard bake were selected to activation condition of negative PR. Hermetic sealing was achieved at the Si test coupon/ glass substrate and Si test coupon/LTCC substrate. The leak rate of Si test coupon/glass substrate was $5.9{\times}10^{-8}mbar-l/sec$, and there was no effect by adhesive method. The leak rate of Si test coupon/LTCC substrate was $4.9{\times}10^{-8}mbar-l/sec$, and there was no effect by dispensing cycle. Better leak rate value could be achieved to use modified substrate which prevent PR flow, to increase UV expose energy and to use system that controls gap automatically with vision.

  • PDF

Retinoid X Receptor α Overexpression Alleviates Mitochondrial Dysfunction-induced Insulin Resistance through Transcriptional Regulation of Insulin Receptor Substrate 1

  • Lee, Seung Eun;Koo, Young Do;Lee, Ji Seon;Kwak, Soo Heon;Jung, Hye Seung;Cho, Young Min;Park, Young Joo;Chung, Sung Soo;Park, Kyong Soo
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.356-361
    • /
    • 2015
  • Mitochondrial dysfunction is associated with insulin resistance and diabetes. We previously showed that retinoid X receptor ${\alpha}$ ($RXR{\alpha}$) played an important role in transcriptional regulation of oxidative phosphorylation (OXPHOS) genes in cells with mitochondrial dysfunction caused by mitochondrial DNA mutation. In this study, we investigated whether mitochondrial dysfunction induced by incubation with OXPHOS inhibitors affects insulin receptor substrate 1 (IRS1) mRNA and protein levels and whether $RXR{\alpha}$ activation or overexpression can restore IRS1 expression. Both IRS1 and $RXR{\alpha}$ protein levels were significantly reduced when C2C12 myotubes were treated with the OXPHOS complex inhibitors, rotenone and antimycin A. The addition of $RXR{\alpha}$ agonists, 9-cis retinoic acid (9cRA) and LG1506, increased IRS1 transcription and protein levels and restored mitochondrial function, which ultimately improved insulin signaling. $RXR{\alpha}$ overexpression also increased IRS1 transcription and mitochondrial function. Because $RXR{\alpha}$ overexpression, knock-down, or activation by LG1506 regulated IRS1 transcription mostly independently of mitochondrial function, it is likely that $RXR{\alpha}$ directly regulates IRS1 transcription. Consistent with the hypothesis, we showed that $RXR{\alpha}$ bound to the IRS1 promoter as a heterodimer with peroxisome proliferator-activated receptor ${\delta}$ ($PPAR{\delta}$). These results suggest that $RXR{\alpha}$ overexpression or activation alleviates insulin resistance by increasing IRS1 expression.

Byssochlamys fulca가 생성하는 펙틴질 분해효소에 관한 연구 II (Studies on the Pectolytic Enzymes from Byssochlamys fulva II)

  • 남영중;김남수;홍순우
    • 미생물학회지
    • /
    • 제21권2호
    • /
    • pp.86-94
    • /
    • 1983
  • Polygalacturonase of Byssochlamys fulva was purified and characterized. Specific activity increased from 2.21 units/mg protein to 10.47 units/mg protein through $(NH_4)_2SO_4$ treatment, SephadexG-100 gel filtration, and DEAE-Sephadex ion exchange chromatography. Divalent cations, such as $Ca^{++}\;and\;Cu^{++}$, increased polygalacturonase activity greatly. Added as $10^{-3}M$ concentration, $Ca^{++}$ ion enhanced enzyme activity 9.8folds. Optimum temperature was $50^{\circ}C$ and optimum pH was 5.0. Activation energy of reaction was 8.69 Kcal/mole. Michaelis-Menten $constant(K_M)\;and\;V_{max}$ of reaction were $6.27{\times}10^{-3}mole/l\;and\;2.85{$\mu}moles/min$. Polygalacturonase of Byssochlamys fulva preferred polygalacturonic acid to pectin as substrate and was presumed as endo-type on the basis of the relationship between viscosity reduction and substrate degradation. Molecular weight of polygalacturonase was estimated as 55,000.

  • PDF

당근 Acid Phosphatase의 특성 (Characterization of Acid Phosphatase from Carrots)

  • Kim, Gi-Nahm
    • 한국식품영양과학회지
    • /
    • 제23권3호
    • /
    • pp.490-495
    • /
    • 1994
  • Acid phosphatase (EC3.1.3.2) from carrots was partially purified by ammonium sulfate fractionation (30%-80%), Sephacryl S-200 gel filtration, cm-Sepharose CL-6B and DEAE -Sephacel ion exchange chromatography. The optimum ph and temperature of acid phosphatase from carrots were pH 5.5 and 55$^{\circ}C$, respectively. The enzyme was most stable at ph 6.0 and relatively unstable below pH 4.0 . The activation energy of the enayme was determined to be 10.6kcal/mole. The enzyme utilized p-nitrophenyl phosphate as a substrate among tested possible substrates, whereas it hydrolyzed 5' -IMP and 5'-GMP poorly. The Michaelis -Menten constant(Km) of the enzyme with p-nitrophenyl phosphate as a substrate was identified as 0.55mM. Amongtested metal ions and inhibitors, Al+++ Zn++, Cu++ , fluoride, metavanadate and molybdate ions inhibited the enzyme activity drastically.

  • PDF

Effect of Microstructure of Substrate on the Metallization Characteristics of the Electroless Copper Deposition for ULSI Interconnection Effect of Plasma

  • 홍석우;이용선;박종완
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.86-86
    • /
    • 2003
  • Copper has attracted much attention in the deep submicron ULSI metallization process as a replacement for aluminum due to its lower resistivity and higher electromigration resistance. Electroless copper deposition method is appealing because it yields conformal, high quality copper at relatively low cost and a low processing temperature. In this work, it was investigated that effect of the microstructure of the substrate on the electroless deposition. The mechanism of the nucleation and growth of the palladium nuclei during palladium activation was proposed. Electroless copper deposition on TiN barriers using glyoxylic acid as a reducing agent was also investigated to replace toxic formaldehyde. Furthermore, electroless copper deposition on TaN$\sub$x/ barriers was examined at various nitrogen flow rate during TaN$\sub$x/ deposition. Finally, it was investigated that the effect of plasma treatment of as-deposited TaN$\sub$x/ harriers on the electroless copper deposition.

  • PDF