• Title/Summary/Keyword: Substrate Efficiency

Search Result 1,029, Processing Time 0.031 seconds

Simultaneous treatment of Cr(VI) and EDCs using flat type photocatalytic reactor under solar irradiation (평판형 태양광반응기를 이용한 복합오염물질의 동시처리 연구)

  • Kim, Saewon;Cho, Hyekyung;Joo, Hyunku;Her, Namguk;Yi, Kwangbok;Kim, Jong Oh;Yoon, Jaekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.501-509
    • /
    • 2016
  • In this study, a flat-type photocatalytic reactor is applied under solar irradiation for simultaneous treatment of target pollutants: reduction of Cr(VI) to Cr(III) and oxidation of EDCs (BPA, EE2, E2). An immobilized type of photocatalyst was fabricated to have self-grown nanotubes on its surface in order to overcome limitations of powdery photocatalyst. Moreover, Ti mesh form was chosen as substrate and modified to have both larger surface area and photocatalyst content. Ti mesh was anodized at 50V and $25^{\circ}C$ for 30min in the mixed electrolytes ($NH_4F-H_2O-C_2H_6O_2$) and annealed at $450^{\circ}C$ for 2 hours in ambient oxygen to have anatase structure. Surface characterization was done with SEM and XRD methodologies. Fabricated NTT was applied to water treatment, and coexisting Cr(VI) and organics (EDCs) enhanced each other's reactions by scavenging holes and electrons and thus impeding recombination. Also, several experiments were conducted outdoor under direct sunlight and it was observed that both solar-tracking and applying modified photocatalyst were proven to enhance reaction efficiency.

Flexible ITO/PEDOT:PSS Hybrid Transparent Conducting Electrode for Organic Photovoltaics

  • Lim, Kyounga;Jung, Sunghoon;Kang, Jae-Wook;Kim, Jong-Kuk;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.299-299
    • /
    • 2013
  • Indium Tin Oxide (ITO) has widely been used as a transparent conductive oxide (TCE) for photovoltaic devices. Lately, flexibility of ITO becomes an issue as demand of flexible device increases. Several scientists have tried to substitute ITO to different materials such as conductive polymer, graphene, CNT, and metal nanowire because of ITO brittleness. Among the substitute materials, PEDOT:PSS has mostly paid attention because PEDOT:PSS has excellent flexibility and good conductivity. The conductivity of PEDOT:PSS increases up to 1000 S/cm with additives such as DMSO, EG, sorbitol, and so on. In our research group, we introduce a conductive polymer PEDOT:PSS as a buffer layer to improve not only flexibility but also conductivity. As PEDOT:PSS layer forms beneath ITO thin film (20 nm), sheet resistance decreases from $230{\Omega}$/${\Box}$ to $85{\Omega}$/${\Box}$ and crack initiation decreases from 4.5 mm to 3.5 mm as well. We have fabricated organic photovoltaic device and power conversion efficiencies using conventional ITO electrode and ITO/PEDOT:PSS hybrid electrode. The photovoltaic property such as power conversion efficiency for ITO/PEDOT:PSS hybrid electrode is comparable to the value obtained using conventional ITO electrode on glass substrate.

  • PDF

Influence of Bath Temperature on Electroless Ni-B Film Deposition on PCB for High Power LED Packaging

  • Samuel, Tweneboah-Koduah;Jo, Yang-Rae;Yoon, Jae-Sik;Lee, Youn-Seoung;Kim, Hyung-Chul;Rha, Sa-Kyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.323-323
    • /
    • 2013
  • High power light-emitting diodes (LEDs) are widely used in many device applications due to its ability to operate at high power and produce high luminance. However, releasing the heat accumulated in the device during operating time is a serious problem that needs to be resolved to ensure high optical efficiency. Ceramic or Aluminium base metal printed circuit boards are generally used as integral parts of communication and power devices due to its outstanding thermal dissipation capabilities as heat sink or heat spreader. We investigated the characterisation of electroless plating of Ni-B film according to plating bath temperature, ranging from $50^{\circ}C$ to $75^{\circ}C$ on Ag paste/anodised Al ($Al_2O_3$)/Al substrate to be used in metal PCB for high power LED packing systems. X-ray diffraction (XRD), Field-Emission Scanning Electron Microscopy (FE-SEM) and X-ray Photoelectron Spectroscopy (XPS) were used in the film analysis. By XRD result, the structure of the as deposited Ni-B film was amorphous irrespective of bath temperature. The activation energy of electroless Ni-B plating was 59.78 kJ/mol at the temperature region of $50{\sim}75^{\circ}C$. In addition, the Ni-B film grew selectively on the patterned Ag paste surface.

  • PDF

Controlling Water Splitting Characteristics of Anion-Exchange Membranes by Coating Imidazolium Polymer (이미다졸륨 고분자 코팅을 통한 음이온교환막의 물분해 특성 제어)

  • Kim, Do-Hyeong;Park, Jin-Soo;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • In this study, novel pore-filled anion-exchange membranes (PFAEMs) with low electrical resistance, high permselectivity, and low water-splitting flux property under a concentration polarization condition have been developed for the enhancement in the efficiency of electrochemical water treatment processes. The base membranes have been prepared by filling a copolymer containing quaternary ammonium groups with an excellent ion-exchange capability into a porous polyolefin substrate, showing a high performance superior to that of a commercial membrane. In addition, it was confirmed that the electrochemical membrane performances are preserved while the water-splitting flux is effectively controlled by coating an imidazolium polymer onto the surface of the base membrane. The prepared PFAEMs revealed remarkably low electrical resistances of about 1/6~1/8 compared to those of a commercial membrane, and simultaneously low water-splitting flux comparable with that of cation-exchange membranes under a concentration polarization condition.

A Study on the Application of Temperature Feedback Aeration Method for Composting of Municipal Solid Wastes (효율적 퇴비화를 위한 온도제어 공기공급방식의 적용에 관한 연구)

  • Kim, Byung-Tae;Kim, Jung-Wk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.3-18
    • /
    • 1994
  • Municipal solid wastes in Korea have physical and chemical properties suitable for composting, but composting has had little practical use in solid waste disposal until now because of a lack of understanding of process control. For practical use of composting, process control must be capable of maintaining good product quality while large quantities are composted in a short period of time. Ventilation control to maintain optimum temperature(Temperature Feedback Aeration Method) is reported to be convenient to operate. The purpose of this study is to analyze process efficiency and optimum temperature in the temperature feedback aeration method for composting of municipal solid wastes. The results of this study show that degradation and drying of substrate in the temperature feedback aeration method are higher than those in the constant aeration method. And the optimum temperature range for composting of solid wastes appears to be $50{\sim}54^{\circ}C$.

  • PDF

Current Status of Emitter Wrap-Through c-Si Solar Cell Development (에미터 랩쓰루 실리콘 태양전지 개발)

  • Cho, Jaeeock;Yang, Byungki;Lee, Honggu;Hyun, Deochwan;Jung, Woowon;Lee, Daejong;Hong, Keunkee;Lee, Seong-Eun;Hong, Jeongeui
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.17-26
    • /
    • 2013
  • In contrast to conventional crystalline cells, back-contact solar cells feature high efficiencies, simpler module assembly, and better aesthetics. The highest commercialized cell and module efficiency was recorded by n-type back-contact solar cells. However, the mainstream PV industry uses a p-type substrate instead of n-type due to the high costs and complexity of the manufacturing processes in the case of the latter. P-type back-contact solar cells such as metal wrap-through and emitter wrap-through, which are inexpensive and compatible with the current PV industry, have consequently been developed. In this paper the characteristics of EWT (emitter wrap-through) solar cells and their status and prospects for development are discussed.

Endochitosanase Produced by Bacillus sp. P2l as a Potential Source for the Production of Chitooligosaccharides. (키토산 올리고당의 제조용 소재로서 Bacillus sp. P2l 기원의 키토산분해효소)

  • 박노동;조유영;이현철;조종수;조도현
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.345-351
    • /
    • 1998
  • In an effort to develop a potent system for the production of various dp (degree of polymerization) chitooligosaccharides, 32 enzymes or microbial systems were screened for chitosanolytic acitivity using chitosan as a substrate. The efficiency of each enzyme system was evaluated by the changes of turbidity and viscosity of chitosan solution, the amount of precipitate and the reducing sugar-producing activity in the enzymatic reaction mixture. Based on these assay methods for the chitosanase activity, Bacillus sp. P2l out of 32 screened systems showed highly potent endochitosanase, which was comparable with a commercially available enzyme (E7). Chitooligosaccharides of dp 3-7 were separated by TLC as major enzymatic reaction products, suggesting that the chitosanase from Bacillus sp. P2l be endo-splitting type.

  • PDF

Silicon surface texturing for enhanced nanocrystalline diamond seeding efficiency (나노결정질 다이아몬드 seeding 효율 향상을 위한 silicon 표면 texturing)

  • Park, Jong Cheon;Jeong, Ok Geun;Kim, Sang Youn;Park, Se Jin;Yun, Young-Hoon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.86-92
    • /
    • 2013
  • $SF_6/O_2$ inductively coupled plasmas were employed to texture Si surface as a pretreatment for nanocrystalline diamond film growth. It was found that the $SF_6/O_2$ plasma texturing provided a very wide process window where normalized roughness values in the range of 2~16 could be obtained. Significantly improved nucleation densities of ${\sim}6.5{\times}10^{10}cm^{-2}$ compared to conventional mechanical abrasion were achieved after seeding for the textured Si substrate.

Luminescent Characteristics of SrS:CuCl Thin-Film Electroluminescent(TFEL) Devices on CuCl Concentrations (CuCl 농도에 따른 SrS:CuCl 박막 전계발광소자의 발광특성)

  • Lee, Sun-Seok;Im, Seong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.17-23
    • /
    • 2002
  • The SrS:CuCl TFEL devices were fabricated by electron-beam deposition and the luminescent characteristics of the fabricated SrS:CuCl TFEL devices were studied. The SrS powder was used as the host materials and 0.05 ~ 0.6 at% of CuCl powder was added as the luminescent center. The deposition conditions of substrate temperature, electron beam current, and deposition rate were 500 $^{\circ}C$ , 20 ~ 40 mA, and 5 ~ 10 /sec, respectively The total thickness of the phosphor layer deposited was 6000 . The blue emission at low CuCl concentrations was observed from the luminescent centers of monomer, dimer, trimer, and tetramer, The bright greenish blue emission at high CuCl concentrations was observed from the dimer and trimer luminescent centers. The maxium luminance was observed from the SrS:CuCl TFEL devices doped with 0.2 at% of CuCl concentration and the threshold voltage, luminance(L$_{40}$ ), efficiency(η$_{20}$) and CIE coordinate obtained were 55 V, 728 cd/$m^2$, 0.49 lm/w, and (0.21, 0.33), respectively..

Effects of rapid thermal annealing on Physical properties of polycrystalline CdTe thin films (급속열처리가 다결정 CdTe 박막의 물성에 미치는 효과에 관한 연구)

  • 조영아;이용혁;윤종구;오경희;염근영;신성호;박광자
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.348-353
    • /
    • 1996
  • Rapid thermal annealing (RTA) was applied to polycrystalline CdTe thin films evaporated on CdS/ITO/glass substrate and the effect of the annealing temperatures and the atmosphere on physical properties of polycrystalline CdTe thin films and CdTe/CdS solar cell characteristics were studied. Results obtained by EDX showed that the bulk composition of CdTe remained stoichiometric after annealing at $550^{\circ}C$ in the air but the surface composition became Cd-rich. Cross-sectional TEM and micro EDX showed that columnar grains and micro-twins remained even after RTA, however, and the sulfur content in the annealed CdTe (added by sulfur diffusion from CdS during the annealing) was much smaller than that by furnace annealing. Among the investigated RTA temperatures and gas environments, the cell made with CdTe annealed at $550^{\circ}C$ in air showed the best solar energy conversion efficiency.

  • PDF