• 제목/요약/키워드: Substrate Efficiency

검색결과 1,029건 처리시간 0.033초

Influence of Different Supplements on the Commercial Cultivation of Milky White Mushroom

  • Alam, Nuhu;Amin, Ruhul;Khair, Abul;Lee, Tae-Soo
    • Mycobiology
    • /
    • 제38권3호
    • /
    • pp.184-188
    • /
    • 2010
  • Calocybe indica, known as milky white mushroom, grows and cultivated in the sub-tropical and temperate zones of South Asia. We investigated the most suitable supplements and their levels for the commercial cultivation of milky white mushroom. Rice bran, maize powder, and wheat bran with their different levels (10, 20, 30, 40, and 50%) were used as supplements to evaluate the yield and yield contributing characteristics of C. indica. Primordia initiation was observed between 13.5 and 19.3 days. The results indicated that the 30% maize powder supplement was effective for producing viable fruiting bodies. The maximum diameters of the pileus and stalk were observed with 30% maize powder. The highest biological and economic yield and biological efficiency were also obtained with 30% maize powder as a supplement. The results indicate that increasing the supplement level resulted in less biological efficiency, and that 30% maize powder was the best supplement level for rice straw substrate to cultivate milky white mushrooms.

유동층 생물막 반응기를 이용한 고농도 질산성 폐수의 탈질화에 관한 연구 (The High Rate Denitrification of Nitric Acid Wastewater in a Fluidized Bed Biofilm Reactor)

  • 신승훈;김민수;박동일;안재동;장인용
    • 한국환경보건학회지
    • /
    • 제23권1호
    • /
    • pp.95-104
    • /
    • 1997
  • The objectives of this study are to investigate the effect of media on the removal efficiency of nitrate-nitrogen and the biofilm thickness in the fluidized bed biofilm reactor(FBBR) used for the high rate denitrification of nitric acid wastewater. Granular activated carbon(GAC) of 1.274 mm diameter and sand of 0.455 mm diameter were used as the media in the FBBR of 0.05 m diameter and 1.5 m height. As the nitrate-nitrogen concentration of the influent was increased stepwise from 600 to 4800 mg/l, the nitrate- and nitrite-nitrogen concentration of the effluent, biofilm thickness and biofilm dry density were measured to study the effects of media on the denitrification efficiency. The biofilm thickness increased with the substrate loading rate, and the biofilm dry density decreased with the increase of the biofilm thickness. At the influent nitrate-nitrogen concentration of 2400 mg/l, the removal efficiency in the FBBR with GAC was 88%, while that in the FBBR with sand was 99.6%. The biofilm in the FBBR with GAC was so thick, 754.9 $\mu$m, as to increase the mass transfer resistance, compared to that, 143.7 $\mu$m, in the FBBR with sand. The maximum specific denitrification rate in the FBBR with GAC was 15.0 kg-N/m$^3\cdot$ day, while that in the FBBR with sand was 18.0 kg-N/m$^3\cdot$ day. The biomass concentration in the FBBR with sand exhibited the high value 37 kg/m$^3$.

  • PDF

다공성 세라믹 Biofilter를 이용한 Toluene 가스 제거 (Removal of Toluene Vapor by Porous Ceramic Biofilter)

  • 임재신;구자공;박상진
    • 한국대기환경학회지
    • /
    • 제14권6호
    • /
    • pp.599-606
    • /
    • 1998
  • Removal of toluene vapor from airstreams was studied in a biological reactor known as a biofilter. The biofilter was packed porous ceramic inoculated with thickened activated sludge (MLVSS 17,683 mg/L). The lab-scale biofilter was operated for 42 days under various experimental conditions including inlet toluene concentrations and flow rates of the contaminated air streams. Removal efficiency reached up 96.6% after 4 days from start up. Nutrient limitation was proposed as a reason for the decrease in biofilter performence. Biofilter performance decreased substantially, coincident with the buildup of back pressure due to accumulation of excess VSS within the medium bed. Practically, the bed needs to be backwashed when the overall pressure drop is greater than 460.6 Pa at SV (Space Velocity) 100 h-1. Periodic backwashing of the biofilter was necessary for removing excess biomass and attaining stable long -term high removal efficiency The removal efficiency of toluene in the biofilter decreased as the gas velocity and toluene concentration in the inlet gas increased. The maximum elimination capacity of ceramic biofilter could reach up to 444.85 g/m3. hr. When the loading of toluene exceed this critical value, substrate inhibition occurred.

  • PDF

Highly efficient organic electroluminescent diodes realized by efficient charge balance with optimized Electron and Hole transport layers

  • Khan, M.A.;Xu, Wei;Wei, Fuxiang;Bai, Yu;Jiang, X.Y.;Zhang, Z.L.;Zhu, W.Q.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1103-1107
    • /
    • 2007
  • Highly efficient organic electroluminescent devices (OLEDs) based on 4,7- diphenyl-1, 10- phenanthroline (BPhen) as the electron transport layer (ETL), tris (8-hydroxyquinoline) aluminum ($Alq_3$) as the emission layer (EML) and N,$\acute{N}$-bis-[1-naphthy(-N,$\acute{N}$diphenyl-1,1´-biphenyl-4,4´-diamine)] (NPB) as the hole transport layer (HTL) were developed. The typical device structure was glass substrate/ ITO/ NPB/$Alq_3$/ BPhen/ LiF/ Al. Since BPhen possesses a considerable high electron mobility of $5\;{\times}\;10^{-4}\;cm^2\;V^{-1}\;s^{-1}$, devices with BPhen as ETL can realize an extremely high luminous efficiency. By optimizing the thickness of both HTL and ETL, we obtained a highly efficient OLED with a current efficiency of 6.80 cd/A and luminance of $1361\;cd/m^2$ at a current density of $20\;mA/cm^2$. This dramatic improvement in the current efficiency has been explained on the principle of charge balance.

  • PDF

$MgF_{2}/CeO_{2}$ 이중반사방지막을 이용한 BCSC태양천지의 효율향상과 최적화 (Optimization and Efficiency Improvement of BCSC Solar Cells Using $MgF_{2}/CeO_{2}$Double Layer Antireflection Coatings)

  • 이욱재;임동건;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.251-254
    • /
    • 2001
  • This paper describes an efficiency improvement of buried contact solar cell (BSCS) with a structure of MgF$_2$/CeO$_2$/Ag/Cu/Ni grid/n$^{+}$ emitter/p-type Si base/p$^{+}$/Al. Theoretical and experimental investigations were performed on a double layer antireflection (DLAR) coating of MgF$_2$/CeO$_2$. We investigated CeO$_2$ films as an AR layer because they have a proper refractive index of 2.46 and demonstrate the same lattice constant as Si substrate. An optimized DLAR coating shewed a reflectance as low as 2.04 % in the wavelengths ranged from 0.4 ${\mu}{\textrm}{m}$ to 1.1 ${\mu}{\textrm}{m}$. BCSC cell efficiency was improved from 16.2 % without any AR coating to 19.9 % by employing DLAR coatings. Further details on MgF$_2$/CeO$_2$ DLAR coatings on the BCSC cells are presented in this paper.per.

  • PDF

가혹온도조건에서 DC/DC 변환기 전력손실모델의 실험적 검증 (Experimental Verification of DC/DC Converter Power Loss Model in Severe Temperature Condition)

  • 노명규;김선영;박영우;정두환
    • 한국정밀공학회지
    • /
    • 제32권5호
    • /
    • pp.455-461
    • /
    • 2015
  • This paper deals with an experimental verification of a temperature-dependent power loss model of a DC/DC converter in severe temperature conditions. The power loss of a DC/DC converter is obtained by summing the losses by the components constituting the converter including switching elements, diodes, inductors, and capacitors. MIL-STD-810F stipulates that any electronic devices must be operable in the temperature ranging from $-50^{\circ}C$ to $70^{\circ}C$. We summarized the temperature-dependent loss models for the converter components. A SEPIC-type converter is designed and built as a target. Using a constant-temperature chamber, a test rig is set up to measure the power loss of the converter. The experimental results confirm the validity of the loss model within 4.5% error. The model can be useful to predict the efficiency of the converter at the operating temperature, and to provide guidelines in order to improve the efficiency.

Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars

  • Ramezanpour, M.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.45-52
    • /
    • 2018
  • Several techniques have been developed for shear strengthening of reinforced concrete (RC) members by using fiber reinforced polymer (FRP) composites. However, debonding of FRP retrofits from concrete substrate still deemed as a challenging concern in their application which needs to be scrutinized in details. As a result, this paper reports on the results of an experimental investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP reinforcing bars. The main objective of the experimentation was increasing the efficiency of shear retrofits by precluding/postponing the premature debonding failure. The experimental program was comprised of six shear deficient RC beams. The test parameters include the FRP rebar spacing, inclination angle, and groove shape. Also, an innovative modification was introduced to the conventional NSM technique and its efficiency was evaluated by experimental observation and measurement. The results testified the efficiency of glass FRP (GFRP) rebars in increasing the shear strength of the test specimens retrofitted using conventional NSM technique. However, debonding of FRP bars impeded exploiting all retrofitting advantages and induced a premature shear failure. On the contrary, application of the proposed modified NSM (MNSM) technique was not only capable of preventing the premature debonding of FRP bars, but also could replace the failure mode of specimen from the brittle shear to a ductile flexural failure which is more desirable.

Application of Polystyrene/SiO2 Core-shell Nanospheres to Improve the Light Extraction of GaN LEDs

  • Yeon, Seung Hwan;Kim, Kiyong;Park, Jinsub
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.314.2-314.2
    • /
    • 2014
  • To improve the optical and electrical properties of commercialized GaN-based light-emitting diodes (LEDs), many methods are suggested. In recent years, great efforts have been made to improve the internal quantum efficiency and light extraction efficiency (LEE) and promising approaches are suggested using a patterned sapphire substrate (PSS), V-pit embedded LED structures, and silica nanostructures. In this study, we report on the enhancement of photoluminescence (PL) intensity in GaN-based LED structures by using the combination of SiO2 (silica) nanospheres and polystyrene/SiO2 core-shell nanospheres. The SiO2 nanospheres-coated LED structure shows the slightly increased PL intensity. Moreover the polystyrene/SiO2 core-shell nanospheres-coated structure shows the more increase of PL intensity comparing to that of only SiO2 spheres-coated structure and the conventional structure without coating of nanospheres. The Finite-difference time-domain (FDTD) simulation results show corresponding result with experimentally observed results. The mechanism of enhancement of PL intensity using the coating of polystyrene/SiO2 core-shell nanospheres on LED surface can be explained by the improvement in extraction efficiency by both increasing the probability of light escape by reducing Fresnel reflection and by multiple scattering within the core-shell nanospheres.

  • PDF

휴게소 개인하수처리시설의 슬러지 탈수공정 적용에 통한 고도처리 개선 연구 (A Study on the Advanced Treatment Process Improvement through the Dewatering Application an Expressway Rest Area Individual Sewage Treatment Plant)

  • 최유현;주현종
    • 한국물환경학회지
    • /
    • 제33권1호
    • /
    • pp.63-69
    • /
    • 2017
  • Small size privately owned wastewater treatment plants have been difficult to treat their wasted sludge and maintain steady effluent quality compared with publicly owned wastewater treatment plants. Therefore, this study has focused on treatment efficiency enhancement, specially nitrogen removal efficiency by recycling dewatering filtrate as an alkalinity additive from filter press using $CaCO_3$. As the result, it was found that the optimal mixing ratio between the excess sludge and $CaCO_3$ was 1:2. The major operation parameters such as specific substrate utilization rate, specific nitrification rate, and specific denitrification rate were also improved 64% ($0.048-0.079mg\;BOD_5/mg\;MLVSS{\cdot}day$), 35% ($0.020-0.027mg\;NH_3-N/mg\;MLVSS{\cdot}day$) and 68% ($0.051-0.086mg\;NO_3{^-}-N/mg\;MLVSS{\cdot}day$), respectively, after the adoption of new methods. Therefore, both the problem of sludge treatment at small scale plants and the need for efficiency improvement could be solved.

순차적 순환배열을 이용한 고온초전도 배열 안테나 설계 및 특성해석 (Design and Characterization of HTS antenna array with sequential rotation array)

  • 정동철;황종선;김영민;최효상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.77-81
    • /
    • 2006
  • We report the performance of a four-element, 11.67 GHz, high-Tc superconducting (HTS) microstrip antenna array with corporate feed network and circular polarization for direct broadcasting satellite (DBS) system. Our array antennas were designed and built on a 0.5 mm thick MgO substrate. To compare the superconducting antennas with normal conducting counterpart, One antenna pattern was fabricated from gold thin film, and a second pattern was fabricated from $YBa_2Cu_3O_{7-x}$ (YBCO) superconducting thin film. To improve the axial ratio of circularly polarized arrays, sequential rotation technique were used. Efficiency, radiation pattern, return loss and bandwidth were measured for both antennas at room temperature and at cryogenic temperature. The array produced good circular polarization, and the gain of the array at 77 K, relative to a copper array at room temperature was approximately 1.54 dB. The measured return loss of our HTS antenna array was 35.79 dB at the resonant frequency of 11.67 GHz and The total effective bandwidth was about 3.4 %. The results showed that high-temperature superconductors, when used in microstrip arrays, improved the efficiency of the HTS antenna array for circularly polarization.

  • PDF