• Title/Summary/Keyword: Substrate Efficiency

Search Result 1,035, Processing Time 0.038 seconds

Ink-Jet 3D Printability of Ceramic Ink with Contact Angle Control

  • Park, Jae-Hyeon;Lee, Ji-Hyeon;Kim, Deug Joong;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.461-467
    • /
    • 2019
  • Ink-jet printing technology, which utilizes a digitalized design to print fine ink directly on a substrate, has been of interest in various industries due to its high efficiency and adaptability to various materials. Recently, active attempts have been made to apply ceramic materials having excellent heat resistance, light resistance, and chemical resistance to the ink-jet printing process. In this study, ceramic ink was synthesized by combining ceramic pigments with UV curable polymer. 3D printability at various contact angles between ceramic ink and substrate was analyzed in detail. Rheological properties of the synthesized ceramic ink were optimized to meet the requirements of the ink-jet printing process, and the contact angle of UV curable ceramic ink was controlled through surface treatment of the substrate. The potential for additive manufacturing of ceramic material using ink-jet printing was investigated by analyzing the effect of contact angle control on ceramic ink droplets and their 3D printability.

Indium Tin Oxide Thin Films Grown on Polyethersulphone (PES) Substrates by Pulsed-Laser Deposition for Use in Organic Light-Emitting Diodes

  • Kim, Kyung-Hyun;Park, Nae-Man;Kim, Tae-Youb;Cho, Kwan-Sik;Sung, Gun-Yong;Lee, Jeong-Ik;Chu, Hye-Yong
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.405-410
    • /
    • 2005
  • High quality indium tin oxide (ITO) thin films were grown by pulse laser deposition (PLD) on flexible polyethersulphone (PES) substrates. The electrical, optical, and surface morphological properties of these films were examined as a function of substrate temperature and oxygen pressure. ITO thin films, deposited by PLD on a PES substrate at room temperature and an oxygen pressure of 15 mTorr, have a low electrical resistivity of $2.9{\times}10^{-4}{\Omega}cm$ and a high optical transmittance of 84 % in the visible range. They were used as the anode in organic light-emitting diodes (OLEDs). The maximum electro luminescence (EL) and current density at 100 $cd/m^2$ were 2500 $cd/m^{2}$ and 2 $mA/m^{2}$, respectively, and the external quantum efficiency of the OLEDs was found to be 2.0 %.

  • PDF

A High-sensitivity Passive Magnetic Transducer Based on PZT Plates and a Fe-Ni Fork Substrate

  • Li, Ping;Wen, Yumei;Jia, Chaobo;Li, Xinshen
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.271-275
    • /
    • 2011
  • This paper proposes a magnetoelectric (ME) composite transducer structure consisting of a magnetostrictive H-type Fe-Ni fork substrate and piezoelectric PZT plates. The fork composite structure has a higher ME voltage coefficient compared to other ME composite structures due to the higher quality (Q) factor. The ME sensitivity of the fork structure reaches 12 V/Oe (i.e., 150 V/cm Oe). The fork composite with two PZT plates electrically connected in series exhibits over 5 times higher ME voltage coefficient than the output of the rectangle structure in the same size. The experiment shows the composite of a Fe-Ni fork substrate and PZT plates has a significantly enhanced ME voltage coefficient and a higher ME sensitivity relative to the prior sandwiched composite laminates. By the use of a lock-in amplifier with 10 nV resolution, this transducer can detect a weak magnetic field of less than $10^{-12}$ T. This transducer can also be designed for a magnetoelectric energy harvester due to its passive high-efficiency ME energy conversion.

A Study on the Electrical Characteristics of Dye-Sensitized Solar Cell with Glass Substrate surface Etching (유리기판 표면 Etching을 통한 분광특성연구)

  • Kim, Haemaro;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.534-537
    • /
    • 2019
  • The optical loss is caused by reflection on the surface of the solar cell, without being absorbed inside the solar cell. Research is actively being conducted to reduce optical loss due to such reflection of light and to improve conversion efficiency of solar cells. In this paper, the surface of the FTO glass substrate was wet etched, and the structural characteristics of the tough surface were evaluated. In addition, optical properties on the surface were analyzed, etched using spectrometer. When light was introduced to a rough surface formed by etching, it was confirmed that the multiple reflections reduced the amount of light reflection from the surface, thereby increaseing the amount of light penetrating the glass substrate.

The Variation of Sapphire Substrate Shape of Micro LED Array to Increasing of Light Intensity and Contrast Ratio (Light Intensity 및 명암비 향상을 위한 마이크로 LED의 사파이어 기판 형상 변화 연구)

  • Cha, Yu-Jung;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • Micro-LEDs can be applied to various parts of a product. However, it has disadvantages compared to general LEDs in large displays such as low efficiency, intensity, and contrast ratio, among others, owing to their short history of study. The simulations were carried out using ray-tracing software to investigate the change in light intensity and light distribution according to pattern shapes on the sapphire substrate of the flip-chip micro-LED (FC μ-LED) array. Three patterns-concave square patterns, convex square patterns, and Ag coated convex patterns-which existed on the opposite side of FC μ-LEDs (115 ㎛ × 115 ㎛) array, were applied. The intensity of FC μ-LEDs on the center of the receivers depends on the pattern depth with shape. The concave square patterns having FC μ-LEDs arrays show that decreasing intensity as the patterns depth. On the contrary, the convex square patterns having FC μ-LEDs arrays shows that increasing intensity as the patterns depth. In addition, the highest intensity shows that FC μ-LEDs having Ag-coated convex patterns on the opposite side of sapphire lead to a reduction in light crosstalk owing to the Ag film.

An Efficiency Improvement of the OLEDs due to the Thickness Variation on Hole-Injection Materials (정공주입물질 두께 변화에 따른 유기발광다이오드의 효율 개선)

  • Shin, Jong-Yeol;Guo, Yi-Wei;Kim, Tae-Wan;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.344-349
    • /
    • 2015
  • A new information society of late has arrived by the rapid development of various information & communications technologies. Accordingly, mobile devices which are light and thin, easy and convenient to carry on the market. Also, the requirements for the larger television sets such as fast response speed, low-cost electric power, wider visual angle display are sufficiently satisfied. The currently most widely studied display material, the Organic Light-emitting Diodes(OLEDs) overwhelms the Liquid Crystal Display(LCD), the main occupier of the market. This new material features a response speed of more than a thousand times faster, no need of backlight, a low driving voltage, and no limit of view angle. And the OLEDs has high luminance efficiency and excellent durability and environment resistance, quite different from the inorganic LED light source. The OLEDs with simple device structure and easy produce can be manufactured in various shapes such as a point light source, a linear light source, a surface light source. This will surely dominate the market for the next generation lighting and display device. The new display utilizes not the glass substrate but the plastic one, resulting in the thin and flexible substrate that can be curved and flattened out as needed. In this paper, OLEDs device was produced by changing thickness of Teflon-AF of hole injection material layer. And as for the electrical properties, the four layer device of ITO/TPD/$Alq_3$/BCP/LiF/Al and the five layer device of ITO/Teflon AF/TPD/$Alq_3$/BCP/Lif/Al were studied experimentally.

Intermediate band solar cells with ZnTe:Cr thin films grown on p-Si substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.247.1-247.1
    • /
    • 2016
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, ZnO/ZnTe:Cr and ZnO/i-ZnTe structures were fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 10 J/cm2. The base pressure of the chamber was kept at approximately $4{\times}10-7Torr$. ZnTe:Cr and i-ZnTe thin films with thickness of 210 nm were grown on p-Si substrate, respectively, and then ZnO thin films with thickness of 150 nm were grown on ZnTe:Cr layer under oxygen partial pressure of 3 mTorr. Growth temperature of all the films was set to $250^{\circ}C$. For fabricating ZnO/i-ZnTe and ZnO/ZnTe:Cr solar cells, indium metal and Ti/Au grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. From the fabricated ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cell, dark currents were measured by using Keithley 2600. Solar cell parameters were obtained under Air Mass 1.5 Global solar simulator with an irradiation intensity of 100 mW/cm2, and then the photoelectric conversion efficiency values of ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cells were measured at 1.5 % and 0.3 %, respectively.

  • PDF

Millimeter-Wave CMOS On-Chip Dipole Antenna Design Optimization (밀리미터파 CMOS 온-칩 다이폴 안테나 설계 최적화)

  • Choi, GeunRyoung;Choi, Seung-Ho;Lee, Kook Joo;Kim, Moonil;Kim, Dowon;Jung, Dong Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.595-601
    • /
    • 2013
  • This paper presents an optimized design of a millimeter-wave on-chip dipole antenna using CMOS process. The serious flaw of the antenna using CMOS process is low radiation efficiency because of high permittivity and conductivity. To overcome the weakness, we need to widen radiation area in air and optimize distance between an antenna and a reflector. The radiation efficiency and bandwidth of the designed antenna are respectively 16.5 % and 22.3 % at 80 GHz. Systematic methods are attempt to analyze an effect on the antenna radiation efficiency. To widen radiation area in air, substrate cut angle and distance between the antenna and chip edge are adjusted. In addition, to optimize distance between an antenna and reflector, substrate thickness and distance between the antenna and a circuit ground plane are adjusted.

Effect of Indium Zinc Oxide Transparent Electrode on Power Conversion Efficiency of Flexible Dye-Sensitized Solar Cells (플렉시블 염료 감응형 솔라셀의 효율에 미치는 Indium Zinc Oxide 투명전극의 영향)

  • Lee, Do Young;Chung, Chee Won
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.105-110
    • /
    • 2009
  • IZO thin films have been deposited on poly(ethylene terephthalate) flexible substrate under varying radio frequency (rf) power, process pressure and thickness of IZO films using rf magnetron sputtering under $Ar/O_2$ gas mix. As the process pressure increased, the deposition rate was slightly increased and the transmittance showed little change, but the resistivity was increased. With increasing rf power, the great increase in deposition rate was observed but the transmittance showed a slight change only, and the resistivity was decreased. In addition, an attempt was made to find the optimal thickness of IZO films under varying the thickness of IZO films at the process conditions of 1 mTorr pressure and 90 W rf power, which showed lowest resistivity. IZO thin films with the thickness of $1,500{\AA}$ showed lowest resistivity and also showed highest transmittance around the wavelength zone of the maximum absorption. The power conversion efficiency of solar cells fabricated using various transparent electrodes with different thicknesses were measured and the solar cell with IZO electrode of $1,500{\AA}$ showed the maximum conversion-efficiency of 2.88 %.

Simulation of the Combined Effects of Dipole Emitter Orientation, Mie Scatterers, and Pillow Lenses on the Outcoupling Efficiency of an OLED (쌍극자 광원의 진동방향, Mie 산란자, 그리고 Pillow 렌즈가 OLED의 광추출효율에 미치는 영향에 대한 시뮬레이션 연구)

  • Lee, Ju Seob;Lee, Jong Wan;Park, Jaehoon;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.193-199
    • /
    • 2014
  • The net effect of the emitter orientation, Mie scatters, and pillow lenses on the outcoupling efficiency (OCE) of a bottom-emitting OLED having an internal photonic crystal layer was investigated by a combined optical simulation based on the finite-difference time-domain method (FDTD) and the ray-tracing technique. The simulation showed that when the emitter orientation was horizontal with respect to the OLED surface, the OCE could be increased by 54% when a photonic crystal layer was employed, while it could be improved by 86% under optimized conditions of Mie scatters and pillow lenses applied to the glass substrate. The peculiar intensity distribution of the OLED, caused by the periodic lattice structure of the photonic crystal layer, could be ameliorated by inserting Mie scatters into the glass substrate. This study suggests that conventional outcoupling structures combined with control of the emitter orientation could improve the OCE substantially.