• Title/Summary/Keyword: Substitution elasticity

Search Result 64, Processing Time 0.018 seconds

Production Characteristics and Efficiency of Korean Railroad Industry using a Distance Function (거리함수를 이용한 한국 철도산업의 생산특성 및 효율성 분석)

  • Kim, Seong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.5 s.91
    • /
    • pp.45-56
    • /
    • 2006
  • In order to construct an information pool on the production characteristics and efficiency of Korean railroad industry, various alternative approaches have to be applied. In this paper we present an empirical application of the distance function to measure the technical efficiency and the production characteristics of Korean railroad industry, The distance function firstly introduced by Shephard (1953) provides the advantage that it does not need information about prices, so it can accommodate the multiple output nature of the railway only using the quantifies as data. This is of great relevance in the context of the public sector such as railroad industry where there are often distinct control mechanisms on input prices. Also the distance function allows us to obtain a measure of technical efficiency as well as a measure of production characteristics. From annual data on Korean railroad industry during 1964-2004, multiple output distance function is estimated using quadratic programming model. The resulting technical efficiency estimates has tended to be improved over the period $1980{\sim}2004$. The indirect Morishima elasticities of substitution indicate that the substitutabilities for labor are relatively very low or impossible. The average scale elasticity is 2.7 which means that increasing the scale by 1per cent will result in an output increase by 2.7 percent. This result indicates that economies of scale are present in the Korean railroad industry.

Synthesis of tung oil-based thermoset resin and its thermal·mechanical properties (Tung oil을 이용한 바이오 기반 열경화성 수지 합성 및 이의 열적·물리적 특성 연구)

  • Kim, Han-Eol;Lee, Jong-eun;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.24-30
    • /
    • 2018
  • Various investigations of vegetable oil extracted from natural resources are underway because of their low cost and environmental value. On the other hand, the double bonds in vegetable oil should be substituted to other high reactive functional groups due to their low reactivity for synthesizing bio-polymeric materials. ${\alpha}$-eleostearic acid, which consists of a conjugated triene, is the main component of tung oil, and the conjugated triene allows tung oil to have higher reactivity than other vegetable oils. In this study, tung oil was copolymerized with styrene and divinylbenzene to make a thermoset resin without any substitution of functional groups. The thermal and mechanical properties were measured to examine the effects of the composition of each monomer on the synthesized thermoset resin. The results showed that the products have only one Tg, which means the synthesized thermoset resins are homogeneous at the molecular level. The mechanical properties show that tung oil acts as a soft segment in the copolymer and makes a more elastic product. On the other hand, divinylbenzene acts as a hard segment and makes a more brittle product.

Economic Effects of Eliminating Trade Barriers under Imperfect Competition (불완전경쟁하(不完全競爭下)에서의 무역장벽(貿易障壁) 완화효과(緩和效果))

  • Lee, Hong-gue
    • KDI Journal of Economic Policy
    • /
    • v.14 no.2
    • /
    • pp.29-54
    • /
    • 1992
  • Recent studies on the economic effects of trade liberalization and economic integration have emphasized the significant gains associated with product differentiation and scale economies. Securing access to markets in other countries will make it possible to increase product variety and capture scale economies, thus, expanding the gains from trade. Liberalization is also expected to introduce foreign competition into the previously closed market. Concurrently, the liberalization will improve the competitive market environment for firms selling in the domestic market. Firms will be pressed to either exit or reduce cost. The output per firm, then, will increase due to the exit of rival firms, and the average total cost will decline due to the economies of scale. 'Rationalization' of the production process will eventually follow. This paper addresses the economic effects of (counterfactual) bilateral tariff elimination between Korea and Japan. It computationally assesses the gains from liberalization as well as the resource allocations and welfare effects associated with the tariff reduction. The endogenous determination of the key parameters distinguishes this paper from others. The firm's perceived elasticity of demand and elasticity of substitution in the present model are calibrated to be consistent with the base year data. Korea, Japan, and the rest of the world are modeled explicitly. The sectoral coverage of the model includes twenty-three tradable product categories based on three-digit SITC industries and seven nontradable categories based on one-digit SITC industries. Product categories are also classified into perfectly competitive and imperfectly competitive ones. In the imperfectly competitive industries, product differentiation exists at the firm level, while the perfectly competitive industries are characterized by national product differentiation. The simulation results of bilateral tariff reduction are reported. Tariff elimination tends to increase intra-industry trade flows so that the total amount of exports and imports of both countries expand. Yet, Japan is expected to increase the bilateral trade surplus in the wake of the mutual tariff reduction. Terms-of-trade for Korea will not change, while for Japan it will deteriorate. Equivalent variations reflecting the change in consumer surplus (welfare) will favor Korean consumers. Total output, however, will not change substantially, recording 0.5 and 0.6% for Japan and Korea, respectively. An interesting finding in the analysis is that the gains from increased competition and scale efficiency are not as prevailing as expected in theory.

  • PDF

A Study on Improving the Performance of Shale for Application of Aggregate for Concrete (콘크리트용 골재활용을 위한 셰일 골재의 성능개선에 관한 연구)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5915-5922
    • /
    • 2013
  • In this study, with the aim of improving the performance of shale to allow for its use as coarse aggregate for concrete, we coated shale aggregates with water repellents and polymers and evaluated their physical properties such as density, water absorption rate, wear rate, and stability depending on the coating method. In addition, the effects of the performance improvement were evaluated by assessing the properties of fresh concrete produced by varying the shale substitution ratio, as well as the compressive strength, flexural strength, and freeze-thaw resistance according to curing ages. The test results revealed that the absolute dry densities of all coated aggregates satisfied the standard density for coarse aggregates for concrete(>$2.50g/cm^3$),and the absorption rate of the shale aggregate coated with water repellent decreased by about 50% compared with that of uncoated shale. The wear rate of the polymer-coated shale decreased by up to 13.0% compared with that of uncoated shale. All coated aggregates satisfied the stability standard for coarse aggregates for concrete(${\leq}12$). The water repellent-induced performance improvement decreased the shale aggregates' slump by about 20~30mm compared with that of the uncoated shale aggregates, and the air content of the repellent-coated shale aggregate increased by up to 0.9% compared with that of the uncoated shale aggregate. The compressive strength of the polymer-coated shale aggregates at a curing age of 28 days was RS(F) 95.7% and BS(F) 90.0%, and the flexural strength was RS(F) 98.0 % and BS(F) 92.0% of the corresponding values of concretes produced using plain aggregates. Furthermore, the concrete using polymer-coated shale aggregates showed a dynamic modulus of elasticity of RS(F) 91% and BS(F) 88% after 300 freeze-thaw cycles, thus demonstrating improved freeze-thaw durability.