• Title/Summary/Keyword: Substitute medical materials

Search Result 34, Processing Time 0.02 seconds

Evaluation of the Usefulness of the Self-developed Kw-infrared Reflective Marker in Non-coplanar Treatment (비동일면 치료 시 자체 제작한 Kw-infrared Reflective Marker의 유용성 평가)

  • Kwon, Dong-Yeol;Ahn, Jong-Ho;Park, Young-Hwan;Song, Ki-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • Purpose: In radiotherapy that takes into account respiration using a RPM (Real time Position Management, Varian, USA) system, which can treat in consideration of the movement of tumor, infrared reflective markers supplied by manufacturers cannot obtain respiratory signal if the couch rotates at a certain angle or larger. In order to solve this problem, the author developed the 3D infrared reflective marker named 'Kw-marker' that can obtain respiratory signal at any angle, and evaluate its usefulness. Materials and Methods: In order to measure the stability of respiratory signal, we put the infrared reflective marker on the 3D moving phantom that can reproduce respiratory movement and acquired respiratory signal for 3 minutes under each of 3 conditions (A: $couch\;0^{\circ}$, a manufacturer's infrared reflective marker B: $couch\;0^{\circ}$, Kw-marker C: $couch\;90^{\circ}$, Kw-marker). By analyzing the respiratory signal using a breath analysis program (Labview Ver. 7.0), we obtained the peak value, valley value, standard deviation, variation value, and amplitude value. In order to examine the rotation error and moving range of the target, we placed a B.B phantom on the 3D moving phantom, and obtained images at a couch angle of $0^{\circ}$ and $90^{\circ}$ using OBI, and then acquired the X, Y and Z values (mm) of the ball bearing at the center of the B.B phantom. Results: According to the results of analyzing the respiratory signal, the standard deviation at the peak value was A: 0.002, B: 0.002 and C: 0.003, and the stability of respiration for amplitude was A: 0.15%, B: 0.14% and C:0.13%, showing that we could get respiratory signal stably by using the Kw-marker. When the couch rotated $couch\;90^{\circ}$, the mean rotation error of the ball bearing, namely, the target was X: -1.25 mm, Y: -0.45 mm and Z: +0.1 mm, which were within 1.3 mm on the average in all directions, and the difference in the moving range of the target was within 0.3 mm. Conclusion: When we obtained respiratory signal using the Kw-marker in non-coplanar treatment where the couch rotated, we could acquire respiratory signal stably and the Kw-marker was effective enough to substitute for the manufacturer's infrared reflective marker. When the rotation error and moving range of the target were measured, there was little difference, indicating that the displacement of the reflector movement in couch rotation is the cause of change in the scale and amplitude of respiratory signal. If the converted value of amplitude height according to couch angle is studied further and applied, it may be possible to perform non-coplanar phase-based gating treatment.

  • PDF

Towards Routine Clinical Use of Radial Stack-of-Stars 3D Gradient-Echo Sequences for Reducing Motion Sensitivity

  • Block, Kai Tobias;Chandarana, Hersh;Milla, Sarah;Bruno, Mary;Mulholland, Tom;Fatterpekar, Girish;Hagiwara, Mari;Grimm, Robert;Geppert, Christian;Kiefer, Berthold;Sodickson, Daniel K.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.2
    • /
    • pp.87-106
    • /
    • 2014
  • Purpose : To describe how a robust implementation of a radial 3D gradient-echo sequence with stack-of-stars sampling can be achieved, to review the imaging properties of radial acquisitions, and to share the experience from more than 5000 clinical patient scans. Materials and Methods: A radial stack-of-stars sequence was implemented and installed on 9 clinical MR systems operating at 1.5 and 3 Tesla. Protocols were designed for various applications in which motion artifacts frequently pose a problem with conventional Cartesian techniques. Radial scans were added to routine examinations without selection of specific patient cohorts. Results: Radial acquisitions show significantly lower sensitivity to motion and allow examinations during free breathing. Elimination of breath-holding reduces failure rates for non-compliant patients and enables imaging at higher resolution. Residual artifacts appear as streaks, which are easy to identify and rarely obscure diagnostic information. The improved robustness comes at the expense of longer scan durations, the requirement for fat suppression, and the nonexistence of a time-to-center value. Care needs to be taken during the configuration of receive coils. Conclusion: Routine clinical use of radial stack-of-stars sequences is feasible with current MR systems and may serve as substitute for conventional fat-suppressed T1-weighted protocols in applications where motion is likely to degrade the image quality.

The effect of immobilization of heparin and bone morphogenic protein-2 to bovine bone substitute on osteoblast-like cell's function

  • Huh, Jung-Bo;Kim, Sung-Eun;Song, Se-Kyung;Yun, Mi-Jung;Shim, Ji-Suk;Lee, Jeong-Yo;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • PURPOSE. This study was performed to investigate the ability of recombinant human-bone morphogenic protein-2 immobilized on a heparin-grafted bone substrate to enhance the osteoblastic functions. MATERIALS AND METHODS. The Bio-$Oss^{(R)}$, not coated with any material, was used as a control group. In rhBMP-2-Bio-$Oss^{(R)}$ group, rhBMP-2 was coated with Bio-$Oss^{(R)}$ using only deep and dry methods (50 ng/mL, 24 h). In heparinized rhBMP-2-Bio-$Oss^{(R)}$ group, dopamine was anchored to the surface of Bio-$Oss^{(R)}$, and coated with heparin. rhBMP-2 was immobilized onto the heparinized- Bio-$Oss^{(R)}$ surface. The release kinetics of the rhBMP-2-Bio-$Oss^{(R)}$ and heparinized rhBMP-2-Bio-$Oss^{(R)}$ were analyzed using an enzyme-linked immunosorbent assay. The biological activities of the MG63 cells on the three groups were investigated via cytotoxicity assay, cell proliferation assay, alkaline phosphatase (ALP) measurement, and calcium deposition determination. Statistical comparisons were carried out by one-way ANOVA test. Differences were considered statistically significant at $^*$P<.05 and $^{**}$P<.001. RESULTS. The heparinized rhBMP-2-Bio-$Oss^{(R)}$ showed more sustained release compared to the rhBMP-2-Bio-$Oss^{(R)}$ over an extended time. In the measurement of the ALP activity, the heparinized group showed a significantly higher ALP activity when compared with the non-heparinized groups (P<.05). The MG63 cells cultivated in the group with rhBMP-2 showed increased calcium deposition, and the MG63 cells from the heparinized group increased more than those that were cultivated in the non-heparinized groups. CONCLUSION. Heparin increased the rhBMP-2 release amount and made sustained release possible, and heparinized Bio-$Oss^{(R)}$ with rhBMP-2 successfully improved the osteoblastic functions.

Development of Dose Planning System for Brachytherapy with High Dose Rate Using Ir-192 Source (고선량률 강내조사선원을 이용한 근접조사선량계획전산화 개발)

  • Choi Tae Jin;Yei Ji Won;Kim Jin Hee;Kim OK;Lee Ho Joon;Han Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.283-293
    • /
    • 2002
  • Purpose : A PC based brachytherapy planning system was developed to display dose distributions on simulation images by 2D isodose curve including the dose profiles, dose-volume histogram and 30 dose distributions. Materials and Methods : Brachytherapy dose planning software was developed especially for the Ir-192 source, which had been developed by KAERI as a substitute for the Co-60 source. The dose computation was achieved by searching for a pre-computed dose matrix which was tabulated as a function of radial and axial distance from a source. In the computation process, the effects of the tissue scattering correction factor and anisotropic dose distributions were included. The computed dose distributions were displayed in 2D film image including the profile dose, 3D isodose curves with wire frame forms and dosevolume histogram. Results : The brachytherapy dose plan was initiated by obtaining source positions on the principal plane of the source axis. The dose distributions in tissue were computed on a $200\times200\;(mm^2)$ plane on which the source axis was located at the center of the plane. The point doses along the longitudinal axis of the source were $4.5\~9.0\%$ smaller than those on the radial axis of the plane, due to the anisotropy created by the cylindrical shape of the source. When compared to manual calculation, the point doses showed $1\~5\%$ discrepancies from the benchmarking plan. The 2D dose distributions of different planes were matched to the same administered isodose level in order to analyze the shape of the optimized dose level. The accumulated dose-volume histogram, displayed as a function of the percentage volume of administered minimum dose level, was used to guide the volume analysis. Conclusion : This study evaluated the developed computerized dose planning system of brachytherapy. The dose distribution was displayed on the coronal, sagittal and axial planes with the dose histogram. The accumulated DVH and 3D dose distributions provided by the developed system may be useful tools for dose analysis in comparison with orthogonal dose planning.