• Title/Summary/Keyword: Substituent′s effect

Search Result 87, Processing Time 0.031 seconds

Hydrolysis Mechanism of N-(benzenesulfonyl)-C-(N-methylanilino)imidoyl Chloride Derivatives (N-(benzenesulfonyl)-C-(N-methylanilino)imidoyl Chloride 유도체의 가수분해 반응 메카니즘)

  • Kwon, Ki-Sung;Song, Yun-Yi
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.8
    • /
    • pp.650-656
    • /
    • 1995
  • Rate Constants of hydrolysis of N-(benzenesulfonyl)-C-(N-methylanilino)imidoyl chlorides were determined by UV spectrophotometry in 50% (v/v) aqueous methanol at 25$^{\circ}C.$ On the basis of rate equation, substituent effect, solvent effect, salt effect, thermodynamic parameters and hydrolysis product analysis, it may be concluded that the hydrolysis of N-(benzenesulfonyl)-C-(N-methylanilino)imidoyl chlorides proceed through $S_N1$ mechanism via azocarbonium ion intermediate below pH 9.0, while aebove pH 10.0 the hydrolysis proceeds through nucleophilic addition-elimination ($Ad_{N-E}$) mechanism.

  • PDF

Synthesis and quantitative structure-activity relationships(QSAR) analysis of 1-(phenoxymethyl) benzotriazole derivatives as new fungicide (새로운 항균제(抗菌劑)로서 1-(phenoxymethyl)benzotriazole 유도체(誘導體)의 합성(合成)과 정량적(定量的) 구조활성관계(構造活性關係)(QSAR) 분석(分析))

  • Sung, Nack-Do;Lim, Chi-Hwan;Choi, Woo-Young;Ko, Thoug-Sung;Kwon, Ki-Sung
    • Applied Biological Chemistry
    • /
    • v.33 no.3
    • /
    • pp.231-238
    • /
    • 1990
  • The structure-antifungal activity correlations between the structure of fourteen new 1-(phenoxymethyl)benzotriazoles (I) (Y=0), 1-(thiophenoxymethyl)benzotriazoles (ll) (Y=S) and 1-(azidomethyl)benzotriazole (III) derivatives were synthesized, and their activity, fifty percent inhibition of mycelial growth($pI_{50}$), in vitro against Pyricularia oryzae, Fusarium axysporum f.sp sesami, Valsa ceratosperma and Botrytis cinerea were investigated using a generalized QSAR method. The activity of (I) was superior In those of (II) and (III). The effect of the substituents (X) on the phenoxy group (I) was rationalized by a parabolic function of electronic (${\sigma}$), steric ($B_1$) and hydrophobic parameter(${\pi}$), and hydrogen bonding (HB). Where the optimal values of substituent on the fungicidal activity againt P. oryzae and F. axysporum f.sp.sesami are $B_1=1.40A;(H)$ and ${\pi}=0.07{\sim}0.15;(H)$, and those of substituent on the fungicidal activity against V. ceratosperma and B. cinerea are ${\sigma}=0.23{\sim}0.28;\;(C1),\;{\pi}=0.70;$ (C1), respectively. The most effective compound ( I a) and ( I d) were examined in this study.

  • PDF

Linear Free Energy Relationship on the Chemical Shift of Imidoyl Proton in N-benzylideneaniline Derivatives by PMR Spectrometry (核磁氣 共鳴分光法에 義한 N-Benzylideneaniline 誘導體중 Imidoyl Proton 의 Chemical Shift 에 미치는 自由에너지 關係)

  • Nack Do Sung;Cheon Kyu Park;Moon kyu Park;Ki Sung Kwon;Kim, Tae Rin
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.277-282
    • /
    • 1985
  • The effects of linear free energy relationship (LFER) on the imidoyl proton (H${\alpha}$)-substituent chemical shift (SCS) in case of varying para-substituted C-phenyl group in N-benzylideneaniline derivatives were studied. The H${\alpha}$-SCS values and LFER parameters such as ${\sigma}$,${\sigma}^+$, ${\sigma}_I$,${\sigma}_R, F and R were applied to the Hammett, Okamoto-Brown, and Taft, Swain-Lupton's dual substituents parameter (DSP) equations. The results were: (1) the blending coefficient values, ${\lambda}$ = 2.8∼3.2, it's means that the resonance effect (R) was larger than inductive effect (I) and field effect (F), and (2) the values of percent resonance and percent field effects were %R = 66.6 and %F = 33.4, respectively, yielding the ratio of resonance effect (R) to field effect (F) of 2 : 1.

  • PDF

Application of Screening Technology for Capture of Hydrogen Sulfide Using Ionic Liquids (이온성 액체의 황화수소의 포집을 위한 스크리닝 기법의 활용)

  • Han, Sangil;Lee, Bong-Seop
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.41-45
    • /
    • 2019
  • Hydrogen sulfide ($H_2S$) is mainly produced along with methane and hydrocarbons in many gas fields as well as hydrodesulfurization processes of crude oils containing sulfur compounds and the emission of $H_2S$ has a considerable effect on both environmental problem and human health aspects due to formation of, e.g. acid rain and smog. In recent years, ionic liquids (ILs) have been proposed as the most promising solvents for $CO_2$ and hazardous pollutants capture, such as $H_2S$ and sulfur dioxide ($SO_2$). In this work, we demonstrate the use of the predictive COSMO-SAC model for the prediction of Henry's law constant of $H_2S$ in ILs. Furthermore, the method is used to screen for potential IL candidates for $H_2S$ capture from a set of 2,624 ILs formed from 82 cations and 32 anions. The effects of cation on the Henry's law constant of $H_2S$ such as (i) the variation of the alkyl chain length on cation, (ii) the substituent of methyl group ($-CH_3$) for H in C(2) position and (iii) the change of ring structure for cation family are clearly predicted by COSMO-SAC model.

The α-Effect in SNAr Reaction of Y-Substituted-Phenoxy-2,4-Dinitrobenzenes with Amines: Reaction Mechanism and Origin of the α-Effect

  • Cho, Hyo-Jin;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2448-2452
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for $S_NAr$ reactions of Y-substituted-phenoxy-2,4-dinitrobenzenes (1a-1g) with hydrazine and glycylglycine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. Hydrazine is 14.6-23.4 times more reactive than glycylglycine. The magnitude of the ${\alpha}$-effect increases linearly as the substituent Y becomes a stronger electron-withdrawing group (EWG). The Br${\o}$nsted-type plots for the reactions with hydrazine and glycylglycine are linear with ${\beta}_{lg}=-0.21$ and -0.14, respectively, which is typical for reactions reported previously to proceed through a stepwise mechanism with expulsion of the leaving group occurring after rate-determining step (RDS). The Hammett plots correlated with ${\sigma}^{\circ}$ constants result in much better linear correlations than ${\sigma}^-$ constants, indicating that expulsion of the leaving group is not advanced in the transition state (TS). The reaction of 1a-1g with hydrazine has been proposed to proceed through a five-membered cyclic intermediate ($T_{III}$), which is structurally not possible for the reaction with glycylglycine. Stabilization of the intermediate $T_{III}$ through intramolecular H-bonding interaction has been suggested as an origin of the ${\alpha}$-effect exhibited by hydrazine.

Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile

  • Ul Hoque, Md. Ehtesham;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3880-3886
    • /
    • 2011
  • The nucleophilic substitution reactions of diisopropyl thiophophinic chloride (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $65.0^{\circ}C$. The anilinolysis rate of 3 is rather slow to be rationalized by the conventional stereoelectronic effects. The obtained deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are secondary inverse ($k_H/k_D$ = 0.80-0.96). The anilinolyses of ten P=S systems in MeCN are reviewed on the basis of DKIEs and selectivity parameters to obtain systematic information on the DKIEs and mechanism for thiophosphoryl transfer reactions. The steric effects of the two ligands on reactivity, DKIEs, mechanism, and substituent effects of the nucleophile (X) on the DKIEs are discussed.

Kinetics and Mechanism of the Anilinolysis of O-Ethyl Phenyl Phosphonochloridothioate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2707-2710
    • /
    • 2012
  • The nucleophilic substitution reactions of O-ethyl phenyl phosphonochloridothioate with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are kinetically investigated in acetonitrile at $55.0^{\circ}C$. The deuterium kinetic isotope effects (DKIEs) invariably increase from a secondary inverse DKIE ($k_H/k_D$ = 0.93) to a primary normal DKIE ($k_H/k_D$ = 1.28) as the substituent of nucleophile (X) changes from electron-donating to electron-withdrawing. These can be rationalized by the gradual transition state (TS) variation from a backside to frontside attack. A concerted $S_N2$ mechanism is proposed. A trigonal bipyramidal TS is proposed for a backside attack while a hydrogen-bonded, four-center-type TS is proposed for a frontside attack.

Synthesis and Cytotoxic Activity of 1-(1-Benzoylindoline-5-sulfonyl)-4-phenylimidazolidinones

  • Sang-Hun Jung;Hui-Soon Lee;Nam-Soo Kim;Hwan-Mook Kim;Moonsun Lee;Dong-Rack Choi;Jung-Ah Lee;Yong-Ho Chung;Eun-Yi Moon
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.478-484
    • /
    • 2004
  • The novel 1-(1-benzoylindoline-5-sulfonyl)-4-phenyl-4,5-dihydroimidazolones 2 shows highly potent and broad cytotoxicities. Their cytotoxicities against human lung carcinoma A549, human chronic myelogenous leukemia K562, and human ovarian adenocarcinoma SK-OV-3 are compatible with doxorubicin. Compound 2p (1-[(4-aminobenzoyl)indoline-5-sulfonyl])-4-phenyl-4,5-dihydroimidazolone) exhibits a cytotoxicity that is far more potent than doxorubicin and also exhibits highly effective antitumour activities against murine (3LL, Colon 26) and human xenograft (NCI-H23, SW620) tumor models.

Reaction of Thexylalkoxyboranes with Selected Orgnic Compounds Containing Representative Functional Groups Comparison of Reducing Characteristics of the Alkoxy Derivatives

  • 차진순;장석원;권오운;전중현
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.243-249
    • /
    • 1998
  • The reaction of alcohol with a solution of thexylborane (ThxBH2) in tetrahydrofuran (THF) provides a new class of mild and selective reducing agents, thexylalkoxyboranes (ThxBHOR: R=Et, i-Pr, i-Bu, s-Bu, t-Bu, Ph). In order to elucidate the effect of the alkoxy group in reduction reactions, the reducing power of ThxBHOR toward selected organic compounds containing representative functional groups under practical conditions (THF, 25°, the quantitative amount of reagent to compound) has been investigated. Generally, the reactivity of ThxBHOR is largely dependent upon the alkoxy substituent. ThxBHOR can be synthesized from a variety of alcohols, thus allowing control of the steric and electronic environment of these reagents.

Kinetic Studies on the Addition of Thiophenol to ${\alpha}$ N-Diphenylnitrone

  • Tae-Rin Kim;Kwang-Il Lee;Sang-Yong Pyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.301-303
    • /
    • 1991
  • The rate constants for the nucleophilic addition of thiophenol to $\alpha$, N-diphenylnitrone and it's derivatives (p-$OCH_3$, p-Cl, p-$NO_2$) were determined from pH 3.0 to 13.0 by UV spectrophotometry and rate equations which can be applied over a wide pH range were obtained. On the basis of rate equation, general base and substituent effect a plausible addition mechanism of thiophenol to ${\alpha}$, N-diphenylnitrone was proposed: At high pH, the addition of sulfide ion to carbon-nitrogen double bond was rate controlling, however, in acidic solution, reaction was proceeded by the addition of thiophenol molecule to carbon-nitrogen double bond after protonation at oxygen of ${\alpha}$, N-diphenylnitrone.