• Title/Summary/Keyword: Substations

Search Result 295, Processing Time 0.026 seconds

Effect Analysis for Frequency Recovery of 524 MW Energy Storage System for Frequency Regulation by Simulator

  • Lim, Geon-Pyo;Choi, Yo-Han;Park, Chan-Wook;Kim, Soo-Yeol;Chang, Byung-Hoon;Labios, Remund
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.227-232
    • /
    • 2016
  • To test the effectiveness of using an energy storage system for frequency regulation, the Energy New Business Laboratory at KEPCO Research Institute installed a 4 MW energy storage system (ESS) demonstration facility at the Jocheon Substation on Jeju Island. And after the successful completion of demonstration operations, a total of 52 MW ESS for frequency regulation was installed in Seo-Anseong (28 MW, governor-free control) and in Shin-Yongin (24 MW, automatic generation control). The control system used in these two sites was based on the control system developed for the 4 MW ESS demonstration facility. KEPCO recently finished the construction of 184 MW ESS for frequency regulation in 8 locations, (e.g. Shin-Gimjae substation, Shin-Gaeryong substation, etc.) and they are currently being tested for automatic operation. KEPCO plans to construct additional ESS facilities (up to a total of about 500 MW for frequency regulation by 2017), thus, various operational tests would first have to be conducted. The high-speed characteristic of ESS can negatively impact the power system in case the 500 MW ESS is not properly operated. At this stage we need to verify how effectively the 500 MW ESS can regulate frequency. In this paper, the effect of using ESS for frequency regulation on the power system of Korea was studied. Simulations were conducted to determine the effect of using a 524 MW ESS for frequency regulation. Models of the power grid and the ESS were developed to verify the performance of the operation system and its control system. When a high capacity power plant is tripped, a 24 MW ESS supplies power automatically and 4 units of 125MW ESS supply power manually. This study only focuses on transient state analysis. It was verified that 500 MW ESS can regulate system frequency faster and more effectively than conventional power plants. Also, it was verified that time-delayed high speed operations of multiple ESS facilities do not negatively impact power system operations. It is recommended that further testing be conducted for a fleet of multiple ESSs with different capacities distributed over multiple substations (e.g. 16, 24, 28, and 48 MW ESS distributed across 20 substations) because each ESS measures frequency individually. The operation of one ESS facility will differ from the other ESSs within the fleet, and may negatively impact the performance of the others. The following are also recommended: (a) studies wherein all ESSs should be operated in automatic mode; (b) studies on the improvement of individual ESS control; and (c) studies on the reapportionment of all ESS energies within the fleet.

A Study on the Automation of MVDC System-Linked Digital Substation (MVDC 시스템연계 디지털변전소 자동화 연구)

  • Jang, Soon Ho;Koo, Ja Ik;Mun, Cho Rong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.7
    • /
    • pp.199-204
    • /
    • 2021
  • Digital substation refers to a substation that digitizes functions and communication methods of power facilities such as monitoring, measuring, control, protection, and operation based on IEC 61850, an international standard for the purpose of intelligent power grids. Based on the intelligent operating system, efficient monitoring and control of power facilities is possible, and automatic recovery function and remote control are possible in the event of an accident, enabling rapid power failure recovery. With the development of digital technology and the expansion of the introduction of eco-friendly renewable energy and electric vehicles, the spread of direct current distribution systems is expected to expand. MVDC is a system that utilizes direct current lines with voltage levels and transmission capacities between HVDCs applied to conventional transmission systems and LVDCs from consumers. Converting existing lines in substations, where most power equipment is alternating current centric, to direct current lines will reduce transmission losses and ensure greater current capacity. The process bus of a digital substation is a communication network consisting of communication equipment such as Ethernet switches that connect installed devices between bay level and process level. For MVDC linkage to existing digital substations, the process level was divided into two buses: AC and DC, and a system that can be comprehensively managed in conjunction with diagnostic IEDs as well as surveillance and control was proposed.

Development of Section Insulator with Improved Wear Characteristics (내마모성이 우수한 절연구분장치 국산화 개발)

  • Lee, Kiwon;Jung, Hosung;Park, Young;Cho, Ho Ryung;Lee, Sang Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1633-1639
    • /
    • 2013
  • In a section of AC electric railway, a phase between the sections is different although voltage levels supplied from substations are the same. Therefore, section insulators have been installed to electrically divide between the sections. Two differenet types of section insulator, namely an overlap type and insulator type, are used. In Korean high-speed lines, overlap type section insulator has been adopted. And, insulator type is used in conventional line. The overlap type has the advantage of having no speed limit, but has the disadvantage of requiring long section length. However, the insulator type has the advantage of section length, but also has the disadvantage of having speed limit. In Korean conventional line, an insulator type one relies on the import and there is some problem with wear. In this study, we developed the insulator type section insulator which adopts Teflon tube insulation material. The Teflon material has advantage of the excellent electrical characteristics and wear-resistance characteristics for a longer expected life than that made of existing FRP. In order to compare wear characteristics between the materials, wear tests with reciprocal wear tester are performed. And dynamic behavior tests between the insulators and pantograph are also performed for showing its better dynamic characteristics.

Approximate Model for Peak Demand Power Computation in Metro Railway with DC Rectifiers (DC정류기를 갖는 도시철도의 최대수요전력 산출 근사모델)

  • Kim, Han-Su;Kwon, Oh-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.372-378
    • /
    • 2013
  • This paper presents an approximate model for computing the peak demand power in a metro railway system. The peak demand of substations can be calculated using the current vector iteration method. But the existing method requires many repeated calculations to determine the peak demand power, which makes it difficult to apply to the real-time peak power control problem. In this paper, we assume that none of the conditions vary except source impedance and make an approximate model for rapid calculation based on changes in the impedance of the power substation. The proposed model result is approximately the same as the existing model, which is demonstrated through simulation.

A comprehensive approach to flow-based seismic risk analysis of water transmission network

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.339-351
    • /
    • 2020
  • Earthquakes are natural disasters that cause serious social disruptions and economic losses. In particular, they have a significant impact on critical lifeline infrastructure such as urban water transmission networks. Therefore, it is important to predict network performance and provide an alternative that minimizes the damage by considering the factors affecting lifeline structures. This paper proposes a probabilistic reliability approach for post-hazard flow analysis of a water transmission network according to earthquake magnitude, pipeline deterioration, and interdependency between pumping plants and 154 kV substations. The model is composed of the following three phases: (1) generation of input ground motion considering spatial correlation, (2) updating the revised nodal demands, and (3) calculation of available nodal demands. Accordingly, a computer code was developed to perform the hydraulic analysis and numerical modelling of water facilities. For numerical simulation, an actual water transmission network was considered and the epicenter was determined from historical earthquake data. To evaluate the network performance, flow-based performance indicators such as system serviceability, nodal serviceability, and mean normal status rate were introduced. The results from the proposed approach quantitatively show that the water network is significantly affected by not only the magnitude of the earthquake but the interdependency and pipeline deterioration.

Structural Health Monitoring of Shanghai Tower Considering Time-dependent Effects

  • Zhang, Qilin;Yang, Bin;Liu, Tao;Li, Han;Lv, Jia
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • This paper presents the structural health monitoring (SHM) of Shanghai Tower. In order to provide useful information for safety evaluation and regular maintenance under construction and in-service condition, a comprehensive structural health monitoring (SHM) system is installed in Shanghai Tower, which is composed of a main monitoring station and eleven substations. Structural responses at different construction stages are measured using this SHM system and presented in this study. Meanwhile, a detailed finite element model (FEM) is created and comparison of results between SHM and FEM is carried out. Results indicate that the time-dependent property of concrete creep is of great importance to structural response and the measured data can be used in FEM updating to obtain more accurate FEM models at different construction stages. Therefore, installation of structural health monitoring system in super-tall buildings could be considered as an effective way to assure structural safety during the construction process.

Safely Evaluation on Common Grounding System for Electric Railway (전기철도의 공용접지 시스템에 대한 안정성 평가에 관한 연구)

  • Song, Jin-Ho;Hwang, Yu-Mo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.298-306
    • /
    • 2002
  • We performed an safety evaluation on constructing of a common grounding system for electrical railway in view of its efficacy and technical fit. In order to compare the conventional grounding method, which has been individually conducted, with the common grounding with all ground wires connected in common to the counterpoise buried below the surface of the earth in parallel with rail, we set up scenarios with several cases of fault and load conditions in Chungbuk railway sections with the common grounding system. Based on models for railway conductors including the grounded system, line Parameters of railway power system are computed. The circuit model for power system with up and down lines, auto-transformers and railway substations is used to compute impedances of counterpoise and substation ground net. For each scenario with faults and operation conditions of railway, the induced potentials on signal and communication lines are also computed. It is shown that the common grounding for Chungbuk railway is superior experimentally to the conventional method in three respects: (1) the lower rail potentials during operation of railway in line, (2) the lower rail potentials for short-circuit faults between catenary and rail, and (3) the lower stress voltages on signal and communication lines for short-circuit or ground faults. The analysis results confirm that the grounding system for electric railway is required to be built by the common grounding and be evaluated on its safety in design.

Establishment of Diagnostic Criteria in the Preventive Diagnostic System for the Power Transformer (전력용 변압기 예방진단새스템의 진단기준치 실정)

  • Kweon Dong-Jin;Koo Kyo-Sun;Kwak Joo-Sik;Woo Jung-Wook;Kang Yeon-Wook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.9
    • /
    • pp.449-456
    • /
    • 2005
  • The preventive diagnostic technique prevents transformers from power failure through giving alarm and observing transformers in service. And it helps to establish the plan for optimum maintenance of the transformer as well as to find location or cause of fault using accumulated data. Data detection and experience of the preventive diagnostic system need to establish the preventive diagnostic algorithm regarding interrelationship between detected data and deterioration of equipment. Therefore in-depth analysis about the preventive diagnosis system is required. KEPCO has adopted the preventive diagnostic system at nine 345kV substations since 1997. Techniques for component sensors of the preventive diagnosis system were settled but diagnosis algorithm, diagnostic criteria and practical use of accumulated data are not yet established. This paper, to build up the base of preventive diagnostic algorithm for the Power transformer. investigated the preventive diagnostic criteria for the power transformer.

EMTP Simulation of 345kV Substation in Large Network Using Newly Developed Thevenin Equivalent Network (345kv 미금 변전소 외부 계통의 등가축약 기법을 이용한 EMTP 모델링에 관한 연구)

  • Kwon, Ki-Jin;Jeong, Ki-Seok;Seo, Gyu-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.3
    • /
    • pp.121-125
    • /
    • 2011
  • EMTP-RV is the very powerful program to analyze the dynamic operation of the power system. To use this package in the large complex power system, it is very important to simplify the power system to simple equivalent network. In our study the 100 MVA STATCOM is placed at 345kV "MIGUM" which is the one of the 345kV substations of the Korean Electric Power System that is consist of more than 1000-bus. MIGUM substation is connected with 7 separated transmission lines to main Korean Electric power system. We developed a new method to simplify the network except the substation that we want to analysis. The power system outside the 345kV substation is modeled into the equivalent network. The loop network outside the substation can be modeled to simplified Thevenin equivalent network. The proposed method is applied to IEEE-14 Reliability Test System and the results shows the effectiveness of the method.

A Study on the Development of a Lightning Warning System by the Measurement of Electric Field at the Ground (용량성 프로브와 광전송회로를 이용한 광대역 전압측정장치)

  • Kil, Gyung-Suk;Song, Jae-Yong;Park, Dae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.363-368
    • /
    • 2004
  • A reliable voltage measurement system is necessary to monitor status of power facilities in substations, which is easy to set up and is not influenced by electromagnetic interference in and around substation. In this paper, we described a voltage measurement system (VMS) which is composed of a capacitive voltage probe, an impedance converter, and an optical linker. To get a wide-band characteristic of the VMS, a high speed impedance converter was used, and the output impedance of the VMS was set at $50{\Omega}$ to match any types of observing instruments. The frequency bandwidth of the VMS. which was estimated by a step pulse, was ranges from 11.42 Hz to 13.65 MHz, and the VMS showed a good response characteristic in a high frequency domain such as impulse voltages as well as a commercial frequency voltage.