• Title/Summary/Keyword: Subspace Estimation

Search Result 100, Processing Time 0.022 seconds

Spatial Spectrum Estimation of Broadband Incoherent Signals using Rotation of Signal Subspace Via Signal Enhancement (신호부각에 의한 신호 부공간 회전을 이용한 광대역 인코히어런트 신호의 공간 스펙트럼 추정)

  • 김영수;이계산;김정근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.669-676
    • /
    • 2004
  • In this paper, a new algorithm is proposed for resolving multiple broadband incoherent sources incident on a uniform linear array. The proposed method dose not require any initial estimates for finding the transformation matrix, while the Coherent Signal-Subspace Method(CSM) proposed by Wang and Kaveh requires preliminary estimates of multigroup source location. An effective procedure is derived for finding the enhanced spectral density matrix at the center frequency using signal enhancement approach and then constructing a common signal subspace by selecting a unitary transformation matrix which is obtained via rotation of signal subspace method. The proposed approach is found to provide superior performance relative to that obtained with the CSM method in terms of sample bias of direction-of-arrival estimates.

Subspace-Based Adaptive Beamforming with Off-Diagonal Elements (비 대각요소를 이용한 부공간에서의 적응 빔 형성 기법)

  • Choi Yang-Ho;Eom Jae-Hyuck
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.84-92
    • /
    • 2004
  • Eigenstructure-based adaptive beamfoming has advantages of fast convergence and the insentivity to errors in the arrival angle of the desired signal. Eigen-decomposing the sample matrix to extract a basis for the Sl (signal plus interference) subspace, however, is very computationally expensive. In this paper, we present a simple subspace based beamforming which utilizes off-diagonal elements of the sample matrix to estimate the Sl subspace. The outputs of overlapped subarrays are combined to produce the final adaptive output, which improves SINR (signal-to-interference-plus-noise ratio) comapred to exploiting a single subarray. The proposed adaptive beamformer, which employs an efficient angle estimation is very roubust to errors in both the arrival angles and the number of the incident signals, while the eigenstructure-based beamforer suffers from severe performance degradation.

Extraction of bridge aeroelastic parameters by one reference-based stochastic subspace technique

  • Xu, F.Y.;Chen, A.R.;Wang, D.L.;Ma, R.J.
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.413-434
    • /
    • 2011
  • Without output covariance estimation, one reference-based Stochastic Subspace Technique (SST) for extracting modal parameters and flutter derivatives of bridge deck is developed and programmed. Compared with the covariance-driven SST and the oscillation signals incurred by oncoming or signature turbulence that adopted by previous investigators, the newly-presented identification scheme is less time-consuming in computation and a more desired accuracy should be contributed to high-quality free oscillated signals excited by specific initial displacement. The reliability and identification precision of this technique are confirmed by a numerical example. For the 3-DOF sectional models of Sutong Bridge deck (streamlined) and Suramadu Bridge deck (bluff) in wind tunnel tests, with different wind velocities, the lateral bending, vertical bending, torsional frequencies and damping ratios as well as 18 flutter derivatives are extracted by using SST. The flutter derivatives of two kinds of typical decks are compared with the pseudo-steady theoretical values, and the performance of $H_1{^*}$, $H_3{^*}$, $A_1{^*}$, $A_3{^*}$ is very stable and well-matched with each other, respectively. The lateral direct flutter derivatives $P_5{^*}$, $P_6{^*}$ are comparatively more accurate than other relevant lateral components. Experimental procedure seems to be more critical than identification technique for refining the estimation precision.

Subspace Interference Alignment by Orthogonalization of Reference Vectors (참조 벡터의 직교화 방법을 이용한 부분공간 간섭 정렬)

  • Seo, Jong-Pil;Kim, Hyun-Soo;Lee, Yoon-Ju;Kwon, Dong-Seung;Kim, Ji-Hyung;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.54-61
    • /
    • 2010
  • We propose a subspace interference alignment by orthogonalization of reference vectors. The proposed method improves the sum-rate capacity degradation due to the channel decomposition error and channel estimation error in the real environment. Using the proposed method, each cell uses the reference vector that is orthogonal to the adjacent cells. Then the residual interference produced by the channel decomposition error and the channel estimation error is decreased. The simulation results demonstrate that the proposed method achieves the enhanced sum-rate capacity.

The DOA Estimation of Wide Band Moving Sources

  • Cho, Mun-Hyeong
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • In this paper, a new method is proposed for tracking the direction-of-arrival (DOA) of the wideband moving source incident on uniform linear array sensors. DOA is estimated by focusing transformation matrices. To update focusing matrices along with new data snap shots, we use the FAST (Fast Approximate Subspace Tracking) method. Present focusing matrices are constructed by previous signal and its orthogonal basis vectors as well as present signal and its orthogonal basis vectors, which are the left and right singular vectors of the inner product of two approximated matrices. Simulation results are shown to illustrate the performance of the proposed method.

Classification Using Sliced Inverse Regression and Sliced Average Variance Estimation

  • Lee, Hakbae
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.275-285
    • /
    • 2004
  • We explore classification analysis using graphical methods such as sliced inverse regression and sliced average variance estimation based on dimension reduction. Some useful information about classification analysis are obtained by sliced inverse regression and sliced average variance estimation through dimension reduction. Two examples are illustrated, and classification rates by sliced inverse regression and sliced average variance estimation are compared with those by discriminant analysis and logistic regression.

A Study on Signal Parameters Estimation via Nonlinear Minimization

  • Jeong, Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.28 no.4
    • /
    • pp.305-309
    • /
    • 2004
  • The problem for parameters estimation of the received signals impinging on array sensors has long been of great research Interest in a great variety of applications, such as radar, sonar, and land mobile communications systems. Conventional subspace-based algorithms, such as MUSIC and ESPRIT, require an extensive computation of inverse matrix and eigen-decomposition In this paper, we propose a new parameters estimation algorithm via nonlinear minimization, which is simplified computationally and estimates signal parameters simultaneously.

ITERATIVE FACTORIZATION APPROACH TO PROJECTIVE RECONSTRUCTION FROM UNCALIBRATED IMAGES WITH OCCLUSIONS

  • Shibusawa, Eijiro;Mitsuhashi, Wataru
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.737-741
    • /
    • 2009
  • This paper addresses the factorization method to estimate the projective structure of a scene from feature (points) correspondences over images with occlusions. We propose both a column and a row space approaches to estimate the depth parameter using the subspace constraints. The projective depth parameters are estimated by maximizing projection onto the subspace based either on the Joint Projection matrix (JPM) or on the the Joint Structure matrix (JSM). We perform the maximization over significant observation and employ Tardif's Camera Basis Constraints (CBC) method for the matrix factorization, thus the missing data problem can be overcome. The depth estimation and the matrix factorization alternate until convergence is reached. Result of Experiments on both real and synthetic image sequences has confirmed the effectiveness of our proposed method.

  • PDF

Tutorial: Methodologies for sufficient dimension reduction in regression

  • Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.105-117
    • /
    • 2016
  • In the paper, as a sequence of the first tutorial, we discuss sufficient dimension reduction methodologies used to estimate central subspace (sliced inverse regression, sliced average variance estimation), central mean subspace (ordinary least square, principal Hessian direction, iterative Hessian transformation), and central $k^{th}$-moment subspace (covariance method). Large-sample tests to determine the structural dimensions of the three target subspaces are well derived in most of the methodologies; however, a permutation test (which does not require large-sample distributions) is introduced. The test can be applied to the methodologies discussed in the paper. Theoretical relationships among the sufficient dimension reduction methodologies are also investigated and real data analysis is presented for illustration purposes. A seeded dimension reduction approach is then introduced for the methodologies to apply to large p small n regressions.

A Realization of Reduced-Order Detection Filters

  • Kim, Yong-Min;Park, Jae-Hong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.142-148
    • /
    • 2008
  • In this paper, we deal with the problem of reducing the order of the detection filter for the linear time-invariant system. Even if the detection filter is generally designed in the form of full order linear observer, we show that it is possible to reduce its order when the response of fault signals is limited to a subspace of the estimation state space. We propose a method to extract the subspace using the observer canonical form considering the dynamics related to the remaining subspace acts as a disturbance. We designed a reduced order detection filter to reject the disturbance as well as to guarantee fault detection and isolation. A simulation result for a 5th order system is presented as an illustrative example of the proposed design method.