• Title/Summary/Keyword: Subspace Estimation

Search Result 100, Processing Time 0.019 seconds

Forward Backward PAST (Projection Approximation Subspace Tracking) Algorithm for the Better Subspace Estimation Accuracy

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1E
    • /
    • pp.25-29
    • /
    • 2008
  • The projection approximation subspace tracking (PAST) is one of the attractive subspace tracking algorithms, because it estimatesthe signal subspace adaptively and continuously. Furthermore, the computational complexity is relatively low. However, the algorithm still has room for improvement in the subspace estimation accuracy. In this paper, we propose a new algorithm to improve the subspace estimation accuracy using a normally ordered input vector and a reversely ordered input vector simultaneously.

Interference Suppression Using Principal Subspace Modification in Multichannel Wiener Filter and Its Application to Speech Recognition

  • Kim, Gi-Bak
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.921-931
    • /
    • 2010
  • It has been shown that the principal subspace-based multichannel Wiener filter (MWF) provides better performance than the conventional MWF for suppressing interference in the case of a single target source. It can efficiently estimate the target speech component in the principal subspace which estimates the acoustic transfer function up to a scaling factor. However, as the input signal-to-interference ratio (SIR) becomes lower, larger errors are incurred in the estimation of the acoustic transfer function by the principal subspace method, degrading the performance in interference suppression. In order to alleviate this problem, a principal subspace modification method was proposed in previous work. The principal subspace modification reduces the estimation error of the acoustic transfer function vector at low SIRs. In this work, a frequency-band dependent interpolation technique is further employed for the principal subspace modification. The speech recognition test is also conducted using the Sphinx-4 system and demonstrates the practical usefulness of the proposed method as a front processing for the speech recognizer in a distant-talking and interferer-present environment.

Orthonormalized Forward Backward PAST (Projection Approximation Subspace Tracking) Algorithm (직교설 전후방 PAST (Projection Approximation Subspace Tracking) 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.514-519
    • /
    • 2009
  • The projection approximation subspace tracking (PAST) is one of the attractive subspace tracking algorithms, because it estimates the signal subspace adaptively and continuously. Furthermore, the computational complexity is relatively low. However, the algorithm still has room for improvement in the subspace estimation accuracy. FE-PAST (Forward-Backward PAST) is one of the results from the improvement studies. In this paper, we propose a new algorithm to improve the orthogonality of the FB-PAST (Forward-Backward PAST).

Correlation Matrix Generation Technique with High Robustness for Subspace-based DoA Estimation (부공간 기반 도래각 추정을 위한 높은 강건성을 지닌 상관행렬 생성 기법)

  • Byeon, BuKeun
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.166-171
    • /
    • 2022
  • In this paper, we propose an algorithm to improve DoA(direction of arrival) estimation performance of the subspace-based method by generating high robustness correlation matrix of the signals incident on the uniformly linear array antenna. The existing subspace-based DoA estimation method estimates the DoA by obtaining a correlation matrix and dividing it into a signal subspace and a noise subspace. However, the component of the correlation matrix obtained from the low SNR and small number of snapshots inaccurately estimates the signal subspace due to the noise component of the antenna, thereby degrading the DoA estimation performance. Therefore a robust correlation matrix is generated by arranging virtual signal vectors obtained from the existing correlation matrix in a sliding manner. As a result of simulation using MUSIC and ESPRIT, which are representative subspace-based methods,, the computational complexity increased by less than 2.5% compared to the existing correlation matrix, but both MUSIC and ESPRIT based on RMSE 1° showed superior DoA estimation performance with an SNR of 3dB or more.

Note on the estimation of informative predictor subspace and projective-resampling informative predictor subspace (다변량회귀에서 정보적 설명 변수 공간의 추정과 투영-재표본 정보적 설명 변수 공간 추정의 고찰)

  • Yoo, Jae Keun
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.657-666
    • /
    • 2022
  • An informative predictor subspace is useful to estimate the central subspace, when conditions required in usual suffcient dimension reduction methods fail. Recently, for multivariate regression, Ko and Yoo (2022) newly defined a projective-resampling informative predictor subspace, instead of the informative predictor subspace, by the adopting projective-resampling method (Li et al. 2008). The new space is contained in the informative predictor subspace but contains the central subspace. In this paper, a method directly to estimate the informative predictor subspace is proposed, and it is compapred with the method by Ko and Yoo (2022) through theoretical aspects and numerical studies. The numerical studies confirm that the Ko-Yoo method is better in the estimation of the central subspace than the proposed method and is more efficient in sense that the former has less variation in the estimation.

Complexity Reduced Blind Subspace Channel Estimation for DS/CDMA DMB Downlink (DS/CDMA DMB 하향 링크에서 복잡도가 감소된 블라인드 부분 공간 채널 추정)

  • Yang Wan-Chul;Lee Byung-Seub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.863-871
    • /
    • 2004
  • In this paper, we propose a subspace channel estimation technique for DS/CDMA DMB down link system, which can obtain reduction in numerical complexity by using of matched filtering outputs. The complexity reduction is considerable when the channel length is small and the system is moderately loaded. Previously proposed subspace-based blind channel estimation algorithm suffer from high numerical complexity for systems with large spreading gains. Although the proposed algerian suffers a slight performance loss, it becomes negligible for large observation length. Performance is evaluated through simulations and the derivation of the analytical MSE.

Cell ID Detection and SNR Estimation Algorithms Robust to Noise (잡음에 강인한 셀 아이디 검출 및 SNR 추정 알고리즘)

  • Lee, Chong-Hyun;Bae, Jin-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.139-145
    • /
    • 2010
  • In this paper, we propose robust cell ID detection algorithm and SNR estimation algorithm applicable to mobile base station, which can be operated independently. The proposed cell ID estimation uses signal subspace to estimate cell IDs used in cell. The proposed SNR estimation algorithm uses number of noise subspace vectors and the corresponding eigen-vectors. Through the computer simulations, we showed that performance of the proposed cell ID detection and SNR estimation algorithms are superior to existing correlation based algorithms. Also we showed that the proposed algorithm is suitable to fast moving channel in high background noise and strong interference signal.

Time-Varying Subspace Tracking Algorithm for Nonstationary DOA Estimation in Passive Sensor Array

  • Lim, Junseok;Song, Joonil;Pyeon, Yongkug;Sung, Koengmo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1E
    • /
    • pp.7-13
    • /
    • 2001
  • In this paper we propose a new subspace tracking algorithm based on the PASTd (Projection Approximation Subspace Tracking with deflation). The algorithm is obtained via introducing the variable forgetting factor which adapts itself to the time-varying subspace environments. The tracking capability of the proposed algorithm is demonstrated by computer simulations in an abruptly changing DOA scenario. The estimation results of the variable forgetting factor PASTd(VFF-PASTd) outperform those of the PASTd in the nonstationary case as well as in the stationary case.

  • PDF

A Square-Root Forward Backward Correlation-based Projection Approximation for Subspace Tracking (신호부공간 추정 성능 향상을 위한 전후방 상관과 제곱근행렬 갱신을 이용한 COPAST(correlation-based projection approximation for subspace-tracking) 알고리즘 연구)

  • Lim, June-Seok;Pyeon, Yong-Kug
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.7-15
    • /
    • 2011
  • In this paper, we propose a correlation-based subspace estimation technique, which is called square-root forward/backward correlation-based projection approximation subspace tracking(SRFB-COPAST). The SRFB-COPAST utilizes the forward and backward correlation matrix as well as square-root recursive matrix update in projection approximation approach to develop the subspace tracking algorithm. With the projection approximation, the square-root recursive FB-COPAST is presented. The proposed algorithm has the better performance than the recently developed COPAST method.

Blind Signal Subspace Channel Estimation technique for DS-CDMA DMB downlink (DS-CDMA DMB 하향링크에서의 블라인드 신호공간 채널추정 기법)

  • Yang, Wan-Chul;Lee, Byung-Seu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9A
    • /
    • pp.1039-1047
    • /
    • 2004
  • In this paper, we propose a new channel estimation technique for long code DS-CDMA DMB down link system which estimate the channel response based on the signal space vector only, unlike the most conventional sub-space method relying on the orthogonal property of noise space vectors to the signal space vector. Because of this property of the proposed method, very optimum covariance matrix in its dimension can be used in subspace analysis channel estimation technique otherwise it is likely too large to be implemented practically.