• 제목/요약/키워드: Subsonic Flow

검색결과 220건 처리시간 0.024초

Aerodynamics Simulation of Three Hypersonic Forebody/Inlet Models

  • Xiao, Hong;Liu, Zhenxia;Lian, Xiaochun
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.456-459
    • /
    • 2008
  • The purpose of this paper is to examine the aerodynamic characteristics of three hypersonic configurations including pure liftbody configuration, pure waverider configuration and liftbody integrated with waverider configuration. Hypersonic forbodies were designed based on these configurations. For the purpose to integrate with ramjet or scramjet, all the forebodies were designed integrated with hypersonic inlet. To better understand the forebody performance, three dimensional flow field calculation of these hypersonic forebodies integrated with hypersonic inlet were conducted in the design and off design conditions. The computational results show that waverider offer an aerodynamic performance advantage in the terms of higher lift-drag ratios over the other two configurations. Liftbody offer good aerodynamic performance in subsonic region. The aerodynamic performance of the liftbody integrated with waverider configuration is not comparable to that of pure waverider in the terms of lift-drag ratios and is not comparable to that of pure liftbody in subsonic. But the liftbody integrated with waverider configuration exhibit good lateral-directional and longitudinal-directional stability characteristics. Both pure waverider and liftbody integrated with waverider configuration can provide relatively uniform flow for the inlet and offer good aerodynamic characteristics in the terms of recovery coefficient of total pressure and uniformity coefficient.

  • PDF

곡면 벽을 지나는 고아음속 공동 유동에서 발생하는 압력 진동에 관한 연구 (A Study on the Pressure Oscillations in the High-Subsonic Cavity Flows over a Curved Wall)

  • 예아란;이익인;김정수;김희동
    • 한국추진공학회지
    • /
    • 제20권5호
    • /
    • pp.77-83
    • /
    • 2016
  • 종래, 직선벽상의 공동에서 발생하는 유동에 대한 많은 연구가 수행되어 왔다. 그러나 실제 공학적 응용에서 빈번하게 접하게 되는 곡선벽상의 공동 유동에 대한 연구는 찾아보기 드물다. 이러한 곡선 벽상에서는 강한 원심력의 효과가 발생하여 공동 유동에 영향을 미치게 되므로, 종래 직선 벽에서 발생하는 공동 유동과는 그 특성이 다를 것으로 예상되나, 이에 대한 구체적인 정보는 알려져 있지 않다. 본 연구에서는 유동의 마하수가 0.4에서 0.8까지의 고아음속 유동조건에서 곡선 벽 위의 공동 유동장을 수치해석적 방법으로 조사하였으며, 공동의 세장비(L/H)는 3.0으로 고정하였으나, 곡면의 곡률반경을 변화시켰다. 그 결과 곡선 벽의 공동에서 발생하는 압력진동이 직선 벽에 비하여 더 크며, 곡면의 곡률반경이 공동내부에서 발생하는 비정상 유동특성에 큰 영향을 미친다는 것을 알았다.

Flow-conditioning of a subsonic wind tunnel to model boundary layer flows

  • Ghazal, Tarek;Chen, Jiaxiang;Aboutabikh, Moustafa;Aboshosha, Haitham;Elgamal, Sameh
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.339-366
    • /
    • 2020
  • This study aims at modeling boundary layers (BLs) encountered in sparse and built environments (i.e. open, suburban and urban) at the subsonic Wind Tunnel (WT) at Ryerson University (RU). This WT has an insignificant turbulence intensity and requires a flow-conditioning system consisting of turbulence generating elements (i.e., spires, roughness blocks, barriers) to achieve proper turbulent characteristics. This system was developed and validated in the current study in three phases. In phase I, several Computational Fluid Dynamic (CFD) simulations of the tunnel with generating elements were conducted to understand the effect of each element on the flow. This led to a preliminary design of the system, in which horizontal barriers (slats) are added to the spires to introduce turbulence at higher levels of the tunnel. This design was revisited in phase II, to specify slat dimensions leading to target BLs encountered by tall buildings. It was found that rougher BLs require deeper slats and, therefore, two-layer slats (one fixed and one movable) were implemented to provide the required range of slat depth to model most BLs. This system only involves slat movement to change the BL, which is very useful for automatic wind tunnel testing of tall buildings. The system was validated in phase III by conducting experimental wind tunnel testingof the system and comparing the resulting flow field with the target BL fields considering two length scales typically used for wind tunnel testing. A very good match was obtained for all wind field characteristics which confirms accuracy of the system.

가스난방기용 스월버너의 3차원 난류유동 특성에 관한 실험적 연구 (An Experimental Study on the Three Dimensional Turbulent Flow Characteristics of Swirl Burner for Gas Furnace)

  • 김장권
    • 대한기계학회논문집B
    • /
    • 제25권2호
    • /
    • pp.225-234
    • /
    • 2001
  • This paper represents the vector fields, three dimensional mean velocities, the turbulent intensities, the turbulent kinetic energy, and the Reynolds shear stresses in the X-Y plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rates 350 and 450ℓ/min respectively, which are equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of subsonic wind tunnel. The vector plot shows that the maximum axial mean velocity component exists in the narrow slits situated radially on the edge of gas swirl burner, for that reason, there is some entrainment phenomena of ambient air in the outer region of burner. Moreover, mean velocities in the initial region are largely distributed near the outer region of burner at Y/R≒0.97, but they diffuse and develop into the center flow region of burner according to the increase of axial distance. The turbulent intensities and the turbulent kinetic energy due to large inclination of mean velocity and swirl effect show that the maximum value in the initial region of burner is formed in the narrow slits situated radially on the edge of gas swirl burner and large values are mainly formed in the entire region of burner after X/R=2.4358, hence, the combustion reaction is anticipated to occur actively near this region. And the Reynolds shear stresses are also largely distributed from slite to vanes of gas swirl burner in the intial region, but their values largely disappear after X/R=3.2052.

Unsteady Subsonic Aerodynamic Characteristics of Wing in Fold Motion

  • Jung, Yoo-Yeon;Kim, Ji-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.63-68
    • /
    • 2011
  • Aerodynamic characteristics of a wing during fold motion were investigated in order to understand how variations or changes in such characteristics increase aircraft performance. Numerical simulations were conducted, and the results were obtained using the unsteady vortex lattice method to estimate the lift, drag and the moment coefficient in subsonic flow during fold motion. Parameters such as the fold angle and the fold angular velocity were summarized in detail. Generally, the lift and pitching moment coefficients decreased as the angle increased. In contrast, the coefficients increased as the angular velocity increased.

큰 받음각을 갖는 세장형 물체 주위의 점성 유동장 수치 모사 (Numerical Simulation of Asymmetric Vortical Flows on a Slender Body at High Incidence)

  • 노오현;황수정
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.98-111
    • /
    • 1996
  • The compressible laminar and turbulent viscous flows on a slender body in supersonic speed as well as subsonic speed have been numerically simulated at high angle of attack. The steady and time-accurate compressible thin-layer Navier-Stokes code based on an implicit upwind-biased LU-SGS algorithm has been developed and specifically applied at angles of attack of 20, 30 and 40 dog, respectively. The modified eddy-viscosity turbulence model suggested by Degani and Schiff was used to simulate the case of turbulent flow. Any geometric asymmetry and numerical perturbation have not been intentionally or artificially imposed in the process of computation. The purely numerical results for laminar and turbulent cases, however, show clear asymmetric formation of vortices which were observed experimentally. Contrary to the subsonic results, the supersonic case shows the symmetric formation of vortices as indicated by the earlier experiments.

  • PDF

Compound Choking of a Two-Parallel Stream Through a Convergent Duct

  • Kwon, Jin-Kyung;K. Masusaka;Y. Miyazato;M. Masuda;K. Matsuo;H. Katanoda
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1829-1834
    • /
    • 2001
  • The choking of dual subsonic streams flowing through a convergent duct in contact has been investigated experimentally and theoretically. The experiment was conducted by using blow-down wind tunnel. The condition, when the dual stream flow chocking (compound choking) occurs at the nozzle exit, was explained by one-dimensional analysis of compound sound wave propagation. The experimental results for the condition of compound choking were compared with the prediction from theoretical analysis, and the schlieren optical method using the spark light source has been used to visualize the flowfield.

  • PDF

에어터보램제트 엔진의 아음속 성능 해석 (Subsonic Performance Analysis of Air Turbo-Ramjet Engine)

  • 이양지;양수석;양인영
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제23회 추계학술대회 논문집
    • /
    • pp.62-67
    • /
    • 2004
  • 이 논문에서는 메탄을 연료로 하는 에어터보램제트(ATR) 엔진의 아음속 영역에서의 탈설계점 성능 해석을 수행하였다 이를 위하여 ATR 엔진을 수치적으로 모델링하여 성능을 모사하였다. 각 구성품에 대해 탈설계점 성능을 계산할 수 있도록 모델을 작성하였다. 압축기 작동점은 노즐과의 유량매칭(matching)에 의하여, 터빈 작동점은 일 매칭에 의하여 결정하였다. 성능 해석 결과, ATR 엔진은 기존의 개스 터빈 엔진과 비교해 상당히 다른 탈설계점 특성을 가지고 있음을 보였다.

  • PDF

Generation and Suppression of Non-uniform Flow in Scramjet Engines

  • Ben, Hidenori;Watanabe, Toshinori
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.69-74
    • /
    • 2004
  • In scramjet engines with sidewall compression inlet, it is well known that a non-uniform flow appears since a separated region is generated near the flow centerline on the body side. The separated region is caused by shock-boundary layer interaction and likely to cause un-start phenomena since the flow in the separated region is subsonic and acts as a communication path between the isolator and the combustor. In the present study, the non-uniform flow characteristics in the scramjet inlet-isolator region are numerically studied in detail. Effect of flow suction from body sidewall surface on the non-uniform flow field numerically examined to clarify the flow mechanism to suppress the un-start transition.

  • PDF

박리유동장에서 저속 익형의 공기역학적 성능해석 (An Aerodynamic Performance Analysis of the Low-Speed Airfoils in Seperated Flow Field)

  • 유능수
    • 산업기술연구
    • /
    • 제15권
    • /
    • pp.153-168
    • /
    • 1995
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the subsonic airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid-incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid-compressible flow analysis. The Goradia's integral method and the Truckenbrodt integral method are adopted for the boundary layer analysis of the laminar flow and the turbulent flow respectively. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. And the analysis of the seperated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered and its geometry expressed by the formula of Summey & Smith when no seperation occurs. A computational efficiency is verified by the comparison of the computational results with experimental data and by the shorter execution time.

  • PDF