• Title/Summary/Keyword: Subsonic Flow

Search Result 220, Processing Time 0.031 seconds

A Study on Prediction of the Base Pressures for an Axi-Symmetric Body

  • Baik, Doo-Sung;Han, Young-Chool
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1423-1433
    • /
    • 2001
  • A flow modeling method has been developed to analyze the flow in the annular base (rear- facing surface) of a circular engine nacelle flying at subsonic speed but with a supersonic exhaust jet. Real values of exhaust gas properties and temperature at an altitude of 30, 000 feet are employed. Potential flows of the air and gas streams are computed for the flow past a separated wake. Then a viscous jet mixing is superimposed on this inviscid solution. Conserva- tion of mass, momentum and energy for the wake flow field is achieved by multiple iterations with modest computer requirements.

  • PDF

Study of Subsonic Diffusing S-Duct Design Optimization (아음속 확산형 S-덕트 최적 설계에 관한 연구)

  • Kim Su-whan;Kwon Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.121-126
    • /
    • 2002
  • Aircraft propulsion systems often use diffusing S-duct to convey air flow from the wing or fuselage intake to the engine compressor, Well designed S-duct should incur minimal total pressure losses and deliver nearly uniform flow with small transverse velocity components at the engine compressor entrance. Reduced total pressure recovery lowers propulsion efficiency and nonuniform flow conditions at the engine face lower engine stall limits. In this study, S-duct which has maximum total pressure recovery and nearly uniform flow profiles at the compressure intake should be found using design optimization methods with 3-dimensional Wavier-Stokes analyses.

  • PDF

Effect of Reynolds number on compressible convex-corner flows

  • Chung, Kung-Ming;Chang, Po-Hsiung;Chang, Keh-Chin
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.443-454
    • /
    • 2014
  • An experimental study was conducted to investigate the effect of Reynolds number on compressible convex-corner flows, which correspond to an upper surface of a deflected flap of an aircraft wing. The flow is naturally developed along a flat plate with two different lengths, resulting in different incoming boundary layer thicknesses or Reynolds numbers. It is found that boundary layer Reynolds number, ranging from $8.04{\times}10^4$ to $1.63{\times}10^5$, has a minor influence on flow expansion and compression near the corner apex in the transonic flow regime, but not for the subsonic expansion flow. For shock-induced separated flow, higher peak pressure fluctuations are observed at smaller Reynolds number, corresponding to the excursion phenomena and the shorter region of shock-induced boundary layer separation. An explicit correlation of separation length with deflection angle is also presented.

Aeroacoustic Characteristics of Cavity Resonance on Very Low Subsonic Flows (저아음속 유동에 놓여진 개방형 공동의 공력소음 특성)

  • Koh, Sung-Ryong;Moon, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1921-1926
    • /
    • 2004
  • The tone generation mechanism and aeroacoustic characteristics have been investigated for flow over open cavities using direct acoustic numerical simulations. Physically the tone generation mechanism of open cavity is more complicated when flow instabilities are excited by the correlation effects of flow parameters. From non-dimensional parameter studies in very low Mach number range, it is shown that characteristics of cavity resonance inherently involve typical acoustic pattern at each discrete tone frequency, and especially in laminar flow the fundamental tone frequency is determined within flow instability criterion of laminar shear layer as well as cavity geometry, length to depth ratio.

  • PDF

The Structure of Three-dimensional Turbulent Flow Fields of a Cone Type Gas Swirl Burner (콘형 가스 스월버너의 3차원 난류 유동장 구조)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.22-29
    • /
    • 2001
  • This paper represents axial mean velocity, turbulent kinetic energy and swirl number based on momentum flux measured in the X-Y plane and Y-Z plane respectively of a cone type gas swirl burner by using X-probe from the hot-wire anemometer system. This experiment is carried out at flow rates 350 and $450{\ell}/min$ respectively, which are equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of a subsonic wind tunnel. Axial mean velocities and turbulent kinetic energies show that their maximum values exist centering around narrow slits situated radially on the edge of and in the forefront of a burner until $X/R{\fallingdotseq}1.5$, but they have a peculiar shape like a starfish diffusing and developing into inward and outward of a burner by means of the mixing between flows ejected from narrow slits, an inclination baffle plate and swirl vanes respectively according to downstream regions. Moreover, they show a relatively large value in the inner region of 0.5$S_m$ obtained by integration of velocity profiles shows a characteristic that has an inflection point composing of the maximum and minimum value until X/R<3, but shows close agreement with the geometric swirl number after a distance of X/R=3.

  • PDF

Large Eddy Simulation of Boundary Layer Transition on the Turbine Blade (LES를 이용한 축류 터빈 경계층 천이에 대한 수치해석)

  • Jin, Byung-Ju;Park, No-Ma;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.392-397
    • /
    • 2001
  • A numerical study is performed to investigate the interaction between subsonic axial turbine blade boundary layer and periodically oncoming rotor induced wakes. An implicit scheme for solving the compressible Navier-Stokes equation is developed, which adopts a 4th-order compact difference for spatial discretiztion, a 2nd order Crank-Nicolson scheme for temporal discretization and the dynamic eddy viscosity model as the subgrid scale model. The efficiency and the accuracy of the proposed method are verified by applying to some benchmark problems such as laminar cylinder flow, laminar airfoil cascade flow and a transitional flat plate boundary layer flow. Computational results show good agreements with previous experimental and numerical results. Finally, flow through a stator cascade is simulated at $Re = 7.5{\times}10^5$ without free-stream turbulence intensity. The velocity fields and skin friction coefficients in the transitional region show similar trends with previous boundary layer natural transition.

  • PDF

Numerical Analysis of Dynamic Combustion in HyShot Scramjet Combustor with a Transverse Fuel Injection (수직 연료 분사기구를 포함하는 HyShot 스크램제트 연소기의 동적 연소 유동해석)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • This paper describes numerical efforts to investigate combustion characteristics of HyShot scramjet combustor, where gaseous hydrogen is transversely injected into a supersonic cross flow. The corresponding altitude, angle of attack, and equivalence ratio are 35-23 km, $0^{\circ}$, and 0.426 respectively. Two-dimensional simulation reasonably predicts combustor inner pressure distribution and reveals periodic combustion characteristics of HyShot scramjet combustor. Altitude effects are also investigated and the strength of flow instability and subsonic boundary layer thickness affect the combustion efficiency according to altitudes. Frequency analyses provide the flow instability effects on the turbulent combustion in HyShot scramjet combustor.

  • PDF

Numerical Analysis of Dynamic Combustion in HyShot Scramjet Combustor with a Transverse Fuel Injection (수직 연료 분사기구를 포함하는 HyShot 스크램제트 연소기의 동적 연소 유동해석)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.79-85
    • /
    • 2007
  • This paper describes numerical efforts to investigate combustion characteristics of HyShot scramjet combustor, where gaseous hydrogen is transversely injected into a supersonic cross flow. The corresponding altitude, angle of attack, and equivalence ratio are 35-23 km, $0^{\circ}$, and 0.426 respectively. Two-dimensional simulation reasonably predicts combustor inner pressure distribution and reveals periodic combustion characteristics of HyShot scramjet combustor. Altitude effects are also investigated and the strength of flow instability and subsonic boundary layer thickness affect the combustion efficiency according to altitudes. Frequency analyses provide the flow instability effects on the turbulent combustion in HyShot scramjet combustor.

  • PDF

PREDICTION OF AIRCRAFT FLOW FIELD EFFECT BY DIRECT CALCULATION OF INCREMENTAL COEFFICIENTS (증가 계수의 직접 계산법을 이용한 항공기 유동장 효과의 예측)

  • Kim, Eu-Gene;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.41-46
    • /
    • 2006
  • When new weapons are introduced, the target points estimation is one of the important objectives in the flight test as well as the safe separation. The prediction methods help to design the flight test schedule. However, the incremental aerodynamic coefficients in the aircraft flow field so-called BSE are difficult to predict. Generally, the semiempirical methods such as the grid methods, IFM and Flow TGP using database are used for estimation of BSE. However, these methods are quasi-steady methods using static aerodynamic loads. Nowadays the time-accurate CFD method is often used to predict the store separation event. In the current process, the incremental aerodynamic coefficients in BSE regime are calculated directly, and the elimination of delta coefficients is checked simultaneously. This stage can be used for the initial condition of Flow TGP with freestream database. Two dimensional supersonic and subsonic store separation problems have been simulated and incremental coefficients are calculated. The results show the time when the store gets out of BSE region.

  • PDF

Investigation on the tunulent flow of the valve jet experimented using a wind tunnel (풍동을 이용한 밸브제트에서 난류제트 유동고찰)

  • ;Rho, Byung Joon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.257-265
    • /
    • 1981
  • A modified subsonic wind tunnel was employed to investigate the turbulent flow of a valve jet. To effectuate this experimental study, an actual valve and valve seat of a diesel engine were equipped at its outlet (ref. Fig. 3) Theoretically, using the equation of motion of Navier-Stokes in the chlindrical coordinates, the turbulent equation of motion for the incompressible fluid was derived with three assumptions; steady flow (.delta./.delta.t=0), axisymmetry and revolutionary homogeneity(.delta./.delta..phi.=0), no ensemble revolution (V.iden.0). Experimentally, mean and fluctuation velocities have been measured in the redial direction. With a assumption of a non-dimensional velocity distribution equation, a sami-emperical similarity profile equation of the jet flow have been derived, whose empirical constants were deterimed graphically with the data obtained.