• Title/Summary/Keyword: Subsoil compaction

Search Result 12, Processing Time 0.026 seconds

Development of Self-propelled Explosive Subsoiler (1) - Present Status of Soil Compaction and Subsoil Management in Orchard - (자주식 심토환경 개선기 개발(1) - 과수원의 토양 다짐 특성 및 심토 관리 실태 -)

  • Lee, Dong-Hoon;Park, Woo-Pung;Lee, Kyou-Seung
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.397-403
    • /
    • 2009
  • This study was carried out to investigate the present status of subsoil compaction, and subsoil compaction management in orchard as a basic study for developing a self-propelled explosive subsoiler. Subsoil compaction was evaluated using the soil penetration resistance. Soil cone index was measured using the DIK 5520 type cone penetrometer in several fruit farms such as apple, pear, peach and grapes during growing seasons of these fruit in Jecheon, Gamgok, Choongju, Cheonan and Hwasung areas. Most of the subsoil managing machinery were either explosive type or digging type attached to the tractor or power tiller and turning radius of this machine was more than 3-5 m. Many of the farmers wanted to use the subsoiler which can put lime into soil and rupture soil at the same time. For most of the orchard fields, soil penetration resistance in vehicle traffic area was increased quickly and reached about 1.0 MPa in 5 cm soil depth. As the soil depth increased to 15-20 cm, cone penetration resistance reached about 2.0-2.5 MPa which restricted root growth seriously. Thus it was concluded that one of the main reason for increasing the soil compaction in orchard fields is agricultural vehicle traffic. In the vicinity of fruit trees, compaction is not so serious compared to that of the vehicle traffic area, but as the soil depth increased to 20-25 cm, in most of the orchard fields soil penetration resistance reached about 2.0-2.5 MPa which is the root growth-limiting value. Considering the rooting depth of fruit trees which ranged 30-60 cm for apple, pear and peach, and 20-30 cm for grape, it is necessary to loosen the subosoil and improve the subsoil conditions using subsoiler.

Assessment of Subsoil Compaction by Soil Texture on Field Scale

  • Cho, Hee-Rae;Jung, Kang-Ho;Zhang, Yong-Seon;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.628-633
    • /
    • 2015
  • It is necessary to assess soil physical properties and crop growth treated by compaction to establish the soil management standard. This study evaluated the bulk density, strength and crop growth after subsoil compaction for sandy loam and loam on the field in Suwon, Korea. The treatments were compaction and deep tillage. Sandy loam and loam were classified to coarse soil and fine soil, respectively, depending on clay contents. In coarse soil, bulk density of compacted plot was 8~17% greater than control and deep tilled plot. The root growth was worse in compacted plot compared with control. In fine soil, plow pan was not observed in deep tilled plot with 5~19% smaller bulk density than compacted plot and control. Deep tillage improved the crop growth. The soil physical properties by compaction were dependent on clay content and crop growth limit depended on the traffic driving.

Threshold Subsoil Bulk Density for Optimal Soil Physical Quality in Upland: Inferred Through Parameter Interactions and Crop Growth Inhibition

  • Cho, Hee-Rae;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Sonn, Yeon-Kyu;Kim, Myeong-Sook;Choi, Seyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.548-554
    • /
    • 2016
  • Optimal range of soil physical quality to enhance crop productivity or to improve environmental health is still in dispute for the upland soil. We hypothesized that the optimal range might be established by comparing soil physical parameters and their interactions inhibiting crop growth. The parameter identifying optimal range covered favorable conditions of aeration, permeability and root extension. To establish soil physical standard two experiments were conducted as follows; 1) investigating interactions of bulk density and aeration porosity in the laboratory test and 2) determining effects of soil compaction and deep & conventional tillage on physical properties and crop growth in the field test. The crops were Perilla frutescens, Zea mays L., Solanum tuberosum L. and Secale cereael. The saturated hydraulic conductivity, bulk density from the root depth, root growth and stem length were obtained. Higher bulk density showed lower aeration porosity and hydraulic conductivity, and finer texture had lower threshold bulk density at 10% aeration bulk density. Reduced crop growth by subsoil compaction was higher in silt clay loam compared to other textures. Loam soil had better physical improvement in deep rotary tillage plot. Combined with results of the present studies, the soil physical quality was possibly assessed by bulk density index. Threshold subsoil bulk density as the upper value were $1.55Mg\;m^{-3}$ in sandy loam, $1.50Mg\;m^{-3}$ in loam and $1.45Mg\;m^{-3}$ in silty clay loam for optimal soil physical quality in upland.

Damage to earth structures by the 2004 Niigata-ken Chuetsu earthquake in Japan and their rehabilitation works

  • Koseki, Junichi;Tsutsumi, Yukika
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.430-433
    • /
    • 2006
  • Damage to earth structures for roads, railways and residential areas, as well as dams and river levees, during the 2004 Niigata-ken Chuetsu earthquake in Japan, and their rehabilitation works are overviewed. Several influential factors are pointed out, such as a) heavy rainfall preceding the earthquake, b) large aftershocks, c) geological conditions for subsoil including existence of liquefiable layers, d) compaction degrees for embankment, and e) drainage capacity from subsoil/embankments. It is also reported that, in the reconstruction works of damaged roads and railways, preferred use of geogrid-reinforced soil retaining walls was implemented.

  • PDF

Assessment of Soil Compaction Related to the Bulk Density with Land use Types on Arable Land

  • Cho, Hee-Rae;Jung, Kang-Ho;Zhang, Yong-Seon;Han, Kyung-Hwa;Roh, Ahn-Sung;Cho, Kwang-Rae;Lim, Soo-Jeong;Choi, Seung-Chul;Lee, Jin-Il;Yun, Yeo-Uk;Ahn, Byoung-Gu;Kim, Byeong-Ho;Park, Jun-Hong;Kim, Chan-Yong;Park, Sang-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.333-342
    • /
    • 2013
  • Soil compaction is affected by soil texture, organic matter (OM), strength (ST) and soil moisture, which is difficult to understand the degree and effects of related factors. The purpose of the study is to assess the impact of them on the compaction with bulk density (BD). The analysis was conducted with data collected from national-wide monitoring sites including 105 upland soils, 246 orchard soils, and 408 paddy soils between 2009 and 2012. The distributions of soil physical properties were measured. The correlation and multi linear regression analysis were performed between soil physical properties using SAS. The regression equation of BD(y) includes ST, gravitational water contents (GWC), and OM as variables commonly, having additional factors, clay content and sand content in paddy soil and upland soil for only subsoil (p<0.001). Our results show that the BD could be explained about 40~50% by various physical properties. The regression was mainly determined by ST in orchard and upland soil and by the GWC in paddy soil. To mitigate soil compaction, it is important to maintain the proper level of OM in upland soil and to consider the moisture condition with soil texture in paddy soil when making work plan. Furthermore, it would be recommended the management criteria classified by soil texture for the paddy soils.

Decadal Changes in Subsoil Physical Properties as Affected by Agricultural Land Use Types in Korea (농업적 토지이용에 따른 토양물리성 변동 평가)

  • Cho, Hee-Rae;Zhang, Yong-Seon;Han, Kyung-Hwa;Ok, Jung-Hun;Hwang, Seon-Ah;Lee, Hyub-Sung;Kim, Dong-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.567-575
    • /
    • 2018
  • The soil physical quality is a core factor in achieving two of sustainable agriculture's goals: productivity and environment. The purpose of this study was to assess changes in soil physical properties for nearly a decade through periodic monitoring of three cultivation types: upland, orchard, and paddy. Field surveys and lab analysis were conducted to determine the soils physical properties after every 4 years; upland (2009, 2013, and 2017), orchard (2010 and 2014), and paddy (2011 and 2015). In each year soil samples from 162-338 sites were collected. The bulk density of upland subsoil decreased from $1.53Mg\;m^{-3}$ to $1.50Mg\;m^{-3}$ while the plowing depth and subsoil organic matter increased from 13.7 cm to 19.5 cm and from $12.6g\;kg^{-1}$ to $18.3g\;kg^{-1}$ respectively during the period 2009-2017. Plowing depth for orchard increased from 16.7 cm to 18.9 cm. However, organic matter content decreased from $15.9g\;kg^{-1}$ to $15.4g\;kg^{-1}$ during the 2010-2014 period. For paddy, plowing depth and subsoil organic matter decreased from 17.5 cm to 16.7 cm and from $17.5g\;kg^{-1}$ to $15.8g\;kg^{-1}$ respectively. The subsoil bulk density increased from $1.47Mg\;m^{-3}$ to $1.52Mg\;m^{-3}$ from 2011-2015. Excess ratio for soil physical standards increased from 16% to 22% in orchard, 56% to 62% in paddy, and decreased from 41% to 29% in upland. The overall soil physical quality had been ameliorated for upland, but degraded for paddy. Improved tillage practices and application of appropriate organic matter is necessary to enhance the quality of soils, especially in the paddy field.

Analysis and Improvement Practise of Drainage Problem on Soil Profile at the Golf Course Fairway (골프코스 페어웨이 지반 토양의 배수불량 원인과 개선방안)

  • Lee, Jung-Ho;Jung, Gi-Rai;Lee, Jong-Min;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 2012
  • Research was focused on the improvement of poor drainage problems on golf course fairway which had not been performed soil test or properly amended during the course construction. The analysis of the drainage problem basically was caused by a deterioration of soil physical properties by the top layer compaction. The soil hardness reached about 3,000 Kpa around 5~6 cm of soil profile. The slow infiltration speed to subsoil by the compaction was caused directly a poor drainage capacity. However, the properly amended sand soil showed an apparent value of 1,500 Kpa through the subsoil. The water content test showed a similar result that higher rate of 20~30% and ideal rate of 8~12% at poor drainage area and successfully amended area, respectively. However, an imported topsoil media which had higher content of silt and clay from a trans-planted sod had made a heterogeneous soil profile and that caused a poor drain capacity by a low infiltration rate. Those drainage problems triggered to buildup a reduced soil layer by poor soil gas exchange. The soil environment of deoxidation enhanced anaerobic microbial population and induced methane gas build-up to 55 ppm, and that resulted an adverse effect on turf growth by root growth retardation, consequently.

Desalinization Effect of Subsurface Drainage System with Rice Hull Packing (왕겨충전에 따른 암거의 제염 효과)

  • Lee, Seung-Heon;An, Yeoul;Yoo, Sun-Ho;Jung, Yeong-Sang
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.63-69
    • /
    • 2001
  • The main purpose of this study is to seek desalinization effect of subsurface drainage system with rice hull packing in Dae-Ho Reclaimed Land. After 4 years installed sub-surface drainage system, distribution of drained water electric conductivity (ECw) was 4.43~12.78 ds/m. The soil profile showed partial development of the soil structure and compaction of subsoils with increased bulk density. The bulk density of the subsoil was 1.42~1.66 g/cm$^3$, which might limit root growth. The soil color changed near the drainage pipe line. Distribution of soil extract solution ECe and SAR as subsurface drainage pipe position and drainage canal distance showed desalinization effect of subsurface drainage system with rice hull packing as widening effective zone of subsurface drainage pipe.

  • PDF

Vertical Distribution of Bulk Density and Salts in a Plastic Film House Soil (깊이별 용적밀도가 다른 시설재배지 토양의 염류분포)

  • Kim, Pil-Joo;Lee, Do-Kyoung;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.3
    • /
    • pp.226-233
    • /
    • 1997
  • To investigate the salt accumulation in the plastic film house soils, bulk density, electrical conductivity(EC), exchangeable canons and water soluble anions were determined at different depths(0~60cm) in the salt-accumulated plastic film house soils in Yesan, Chungnam, Korea. Bulk density were increased from $1.2Mg/m^3$ to $1.5Mg/m^3$ as the depth changed from 0cm(top soil) to 30cm(subsoil) below the soil surface, whereas the bulk densities between 30cm to 60cm slightly decreased to $1.42Mg/m^3$. These changes of soil bulk densities might influence the porosity and pore size distribution, resulting in affecting the water flow throughout, soil layers. Electrical conductivity and Exchangeable sodium percentage(ESP) for 0 to 10cm soil layer were 5.08 dS/m and 6.4, respectively, while the EC was decreased to less than 1.63 dS/m in 20~30cm depth and about 0.7 dS/m. Salt accumulation patterns in the plastic film house soils might be influenced by the changes of the bulk densities in soil.

  • PDF

A Case Study on Soft Soil Treatment Design and Construction in Vietnam (베트남지역에서의 연약지반 개량 설계.시공 사례)

  • Yoon, Dong-Duk;Cho, Sung-Han;Seo, Won-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.336-345
    • /
    • 2010
  • GS E&C was awarded the contract for the construction of Hanoi - Hai Phong Expressway Package EX-7 from Station Km 72+000 to Station Km 81+300 in December 2008. This project is the $7^{th}$ contract package of the 105.5 km long expressway near Hai Phong city, which includes a FCM-styled bridge along with high embankments over soft ground. For these high embankments, there is a need to treat the soft soil for improving the overall stability during construction and for reducing the post-construction settlement of the expressway. The Designer of this project had adopted four (4) different types of ground improvement techniques to treat the soft ground, including the prefabricated vertical drains (PVD), sand drains (SD), pack drains (PD, or sometimes called packed sand drains), and sand compaction piles (SCP). The main focus of soft soil treatment should be paid attention to the residual settlement after construction. In current design, however, it appeared that the secondary compression (or creep) of the improved soil layer and the consolidation settlement of the lower untreated compressible soil layer have been neglected in the estimation of the post-construction settlement. These uncalculated residual settlements may not only unsatisfy the design criteria but also raise serious problems during service period of this expressway. In this paper, the subsoil condition and current design were reviewed focusing on the employed soft soil treatment method and expected residual settlement.

  • PDF