• Title/Summary/Keyword: Submerged macrophyte

Search Result 10, Processing Time 0.034 seconds

Assessment of Water Quality Impact of Submerged Lakeside Macrophyte (저수지 주변 식물의 침수시 수질 영향)

  • Lee, Yo-Sang;Park, Jong-Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.255-262
    • /
    • 2005
  • In summer and early autumn, eutrophication occurs occasionally in many reservoirs. Lakeside macrophyte which is one of internal pollutants effects on water quality when it is submerged during water surface is rising after rainy season. This study include examination of pollutant load, species of plant, community structure and productivity of macrophyte in unit area at lakeside. The result of this research will be used as a guideline of water quality management on reservoir through assessing water quality effect of submerged plant. The areal distribution, composition of species and submerged area of macrophyte changes according to rainfall pattern every year, so it is difficult to calculate nutrient load annually from submerged macrophyte. In this study, the nutrient load from submerged macrophyte assess from Daecheong and Juam reservoir in 2001. TN and TP load of submerged macrophyte shows 0.043% and 0.069%, respectively, of annual discharge load on Daecheong watershed. At lake Juam, TN and TP shows 0.64% and 1.28% load, respectively. The reason that nutrient load of lake Juam is greater than that of lake Daecheong is that macrophyte distribution area of lake Juam is 5 times greater than that of lake Daecheong. Total nutrient load of lake Daecheong is 3 times greater than that of lake Juam.

Community Characteristics and Assessment of Water Quality Impact by Plants at Flooded Area (저수지역 식물의 군집특성 및 수질영향 평가)

  • Lee, Yosang;Kim, Hojoon;Jeong, Seon A
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.407-415
    • /
    • 2006
  • This study carried out submerged area due to Dam construction in the near future. It includes species classification of plant, survey of community structure, examination of pollutant load and assessment of water quality impact. The vascular plants of this area are listed 224 taxa; 64 families, 168 genera, 193 species, 30 varieties and 1 form. This study area is classified into total 21 communities, most community was consist of grass vegetation. Among the communities, Erigeron annuus ($869,286m^2$, 22%) community was dominant and Erigeron annuus-Avena fatua comminity (16%) was subdominant until May, and then Erigeron canadensis community occupied most area to $1,774,985m^2$ (32%) from May to July. For the evaluation of water quality impact due to submerged macrophyte, nutrient release test was conducted both dead body macrophyte and living body macrophyte. The results of release test show that T-N is not released at dead body macrophyte, but it is released at living body macrophyte, especially living body Artemisia priceps var. orientalis shows 1.436mgN/g. At release test of dead body macrophyte, T-P release rate of Erigeron annuus shows 0.500mgP/g at the top of them and it also shows 0.436mgP/g at Erigeron annuus of living body macrophyte. T-N load of submerged macrophyte shows 0.76% by comparison of total load on watershed and T-P load of that shows 3.61%. In case of removal macrophyte for reduction of pollutant load in submerged area, T-N load of submerged macrophyte changes from 0.76% to 0.15% by comparison of total load on watershed and T-P load of that changes from 3.61% to 0.72%.

Inhibition of Submerged Macrophytes on Phytoplankton I. Field Evidence for Submerged Macrophyte Inhibition on Phytoplankton Biomass

  • Joo, Sung-Bae;Ji, Young-Jung;Park, Sang-Kyu
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.511-519
    • /
    • 2007
  • It is known that phytoplankton biomass or turbidity are lower in waters with submerged macrophytes than those without submerged plants at a given nutrient level. We hypothesize that presence of submerged macrophytes would lower phytoplankton biomass below levels expected by total phosphorus levels through various mechanisms and that phytoplankton biomass would decrease more as the biomass increase of the submerged macrophytes. To find submerged macrophytes effectively lowering phytoplankton growth, we conducted spatial field surveys at 21 water bodies and a temporal monitoring at Seung-un 1 Reservoir, Anmyyeondo Island. We measured chlorophyll ${\alpha}$ concentrations and total phosphorus (TP) concentrations from waters in patches of submerged macrophytes with measurements of submerged plant biomass. Majority of our sites with submerged macrophytes showed much less chlorophyll a concentrations than the predicted ones from literature. Among submerged macrophytes studied, Myriophyllum spicatum and Hydrilla verticillata showed patterns of lowering chlorophyll ${\alpha}/TP$ ratios with increase of their biomass in both spatial and temporal surveys.

The role of macrophytes in wetland ecosystems

  • Rejmankova, Eliska
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.333-345
    • /
    • 2011
  • Aquatic macrophytes, often also called hydrophytes, are key components of aquatic and wetland ecosystems. This review is to briefly summarizes various macrophyte classifications, and covers numerous aspects of macrophytes' role in wetland ecosystems, namely in nutrient cycling. The most widely accepted macrophyte classification differentiates between freely floating macrophytes and those attached to the substrate, with the attached, or rooted macrophytes further divided into three categories: floating-leaved, submerged and emergent. Biogeochemical processes in the water column and sediments are to a large extent influenced by the type of macrophytes. Macrophytes vary in their biomass production, capability to recycle nutrients, and impacts on the rhizosphere by release of oxygen and organic carbon, as well as their capability to serve as a conduit for methane. With increasing eutrophication, the species diversity of wetland macrophytes generally declines, and the speciose communities are being replaced by monoculture-forming strong competitors. A similar situation often happens with invasive species. The roles of macrophytes and sediment microorganisms in wetland ecosystems are closely connected and should be studied simultaneously rather than in isolation.

Role of Aquatic Macrophytes as Refuge of Zooplankton on Physical Distribution (Summer Rainfall) in Shallow Wetlands (물리적인 교란 (여름 강우)에 대한 동물플랑크톤 서식처로서 수생식물의 중요성)

  • Choi, Jong-Yun;Kim, Seong-Ki;Kim, Dong-Hwan;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.308-319
    • /
    • 2016
  • In order to evaluate the role of macrophytes as refuge of zooplankton on physical distribution (i.e. summer rainfall), we investigated the environmental factors, macrophytes, and zooplankton in waterside zones (macrophytes zones) and open water zones of 17 wetlands from May and August, 2011. In this study, a total of 51 zooplankton species were identified, and Polyarthra sp. and Diaphanosoma brachyurum were found to be the most dominant species. Waterside area of each wetland were occupied by a total of 10 macrophyte species, species composition and biomass (dry weight) were different in the survey sites. Zooplankton was more abundant in waterside zone than open water zones lacking macrophytes (One-way ANOVA, df=2, F=27.1, P<0.05), in particular, waterside zone of 1, 8, 9, 10, and 11 wetland were supported by high zooplankton density after summer rainfall. This wetlands were developed by various macrophyte species than other wetland, and submerged plant commonly presented. Waterside zones with various macrophyte species provides complexity to the habitat structure, should be utilized as refuge to avoid disturbance such as summer rainfall. The results indicate that macrophytes are the key components to enhance bio-diversity include zooplankton, and the inclusion of diverse plant species in wetland construction or restoration schemes will result in ecologically healthy food webs.

Standing Crop Distribution of Aquatic Plants in the West Nakdong River and Riparian Wetlands in the Nakdong River (서낙동강 본류 및 낙동강 둔치 습지의 수생식물 생물량 분포)

  • Kim, Gu-Yeon;Kim, Ji Yoon
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.1
    • /
    • pp.62-69
    • /
    • 2014
  • Standing crop distribution of aquatic plants in the West Nakdong River and riparian wetlands in the Nakdong River were surveyed in May, July and September, 2010. Total 25 aquatic macrophyte species (submerged: 9, leaf-floating: 3, free-floating: 5, emergent: 8) were observed during the survey periods. Distribution area of aquatic plants and proportion of submerged communities were highest in Garakchi-deung ($212,032m^2$, 72.7%). The distribution area of aquatic plants was highest in Phragmites australis community ($421,584m^2$), followed by Hydrilla verticillata-Vallisneria natans community ($181,511m^2$), Potamogeton wrightii-Vallisneria natans community ($61,604m^2$), and Hydrocharis dubia community ($49,709m^2$). Garakch-ideung (212,032 kg) also had the highest aquatic plant production, followed by Suanchi-deung (15,546 kg), Daedong (5,813 kg), Dunchi-do (3,963 kg), Maekdo (1,463 kg), Yeommak (571 kg), Jungsa-do (530 kg), and Shinan (300 kg). Average standing crop of the study area were $147.8{\pm}20.8g\;DW{\cdot}m^{-2}$ in 1988, $96.1{\pm}20.0g\;DW{\cdot}m^{-2}$ in 2000, and $172.6{\pm}76.1g\;DW{\cdot}m^{-2}$ in 2010. For a sustainable management of river habitat and food source, aquatic plant should concurrently be surveyed with river environmental variables (i.e. sediment, nutrient, flow).

Monitoring of Nitrogen and Phosphorus from Submerged Plants in Boknae Reservoir around Juam Lake (주암호 복내 저수구역내 침수 자생식물의 질소 및 인 모니터링)

  • Kang, Se-Won;Seo, Dong-Cheol;Lee, Sang-Gyu;Seo, Young-Jin;Park, Ju-Wang;Choi, Ik-Won;Park, Jong-Hwan;Lim, Byung-Jin;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • BACKGROUND: Eutrophication occurs occasionally in reservoirs around lake in summer and early autumn. Lakeside macrophyte which is one of internal pollutants effects on water quality when it is submerged during rainy season. To improve water quality of water supply source in Boknae reservoir around Juam lake, characteristics of nutrient(N, P) uptake and release by submerged plants were investigated. METHODS AND RESULTS: In order to establish the management plan of submerged plants in Boknae reservoir around Juam lake, water level, rainfall, flooding and non-flooding areas, biomass of dominant plants, contents of nitrogen and phosphorus were investigated during 7 months(August, 2010 through February, 2011). Dominant plants were Miscanthus sacchariflorus(MISSA) and Carex dimorpholepis(CRXDM) in Boknae reservoir. Total plant area of Boknae reservoir in August, 2010 was 987,872 $m^2$. In Boknae reservoir, flooding occurred from August until February caused by rainfall during rainy season. The total amounts of nitrogen and phosphorus uptakes by MISSA were 247 and 22 kg/total reservoir area, respectively. By CRXDM, the total amounts of nitrogen and phosphorus uptakes were 11,340 and 1,231 kg/total reservoir area, respectively. The total amounts of nitrogen and phosphorus residues by MISSA were 34 and 11 kg/total reservoir area, respectively. By CRXDM, the total amounts of nitrogen and phosphorus residues were 491 and 68 kg/total reservoir area, respectively. CONCLUSION(S): Total amounts of nitrogen and phosphorus releases in Boknae reservoir were 12,212 and 1,324 kg/total reservoir area, respectively. The results demonstrate that total nitrogen and total phosphorus in water were strongly influenced by submerged plants. Therefore, management plan for submerged plants during rainy season will be needed to improve water quality of water supply source in Boknae reservoir around Juam lake.

Removal and Release Velocities of Nutrients by Submerged Plants in Flood Control Reservoirs around Juam Lake (주암호 홍수조절용지내 침수 식물체의 영양염류 제거속도 및 용출속도)

  • Han, Jong-Hak;Seo, Dong-Cheol;Kim, Sang-Don;Kang, Se-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Kim, Hyun-Ook;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.144-152
    • /
    • 2011
  • BACKGROUND: Eutrophication occurs occasionally in flood control reservoirs around Juam lake in summer and early autumn. Lakeside macrophyte which is one of internal pollutants effects on water quality when it is submerged during water surface is rising after rainy season. METHODS AND RESULTS: To improve water the quality of water from water supply source and to establish the management plan of submerged plants in flood control reservoirs around Juam Lake, the removal and release velocities of nutrients by submerged plants in site 1 and 2 were investigated. Removal or release velocity constant (K) of COD by Carex dimorpholepis Steud in column was 0.07~0.18 $day^{-1}$ at 0~4 days after flooding, -0.23~-0.17 $day^{-1}$ at 5~19 days after flooding and -0.28~0.03 $day^{-1}$ at 20~33 days after flooding. Removal or release velocity constant (K) of T-N by Carex dimorpholepis Steud was 0.02 $day^{-1}$ at 0~4(8) days after flooding, -0.13~-0.10 $day^{-1}$ at 5(9)~33 days after flooding in column. Removal or release velocity constant (K) of T-P by Carex dimorpholepis Steud was 0.05~0.06 $day^{-1}$ at 0~4 days after flooding, -0.14~-0.09 $day^{-1}$ at 5~33 days after flooding. Release velocity constant (K) of nutrients by Miscanthus sacchariflorus Benth was lower than that by Carex dimorpholepis Steud. In site 1, the amount of nutrients release by Carex dimorpholepis Steud was 6,719 kg/month/area for COD, 2,397 kg/month/area for T-N and 466 kg/month/area for T-P. The amounts of nutrients release by Carex dimorpholepis Steud were higher than those by Miscanthus sacchariflorus Benth in both sites. CONCLUSION(s): The results of this study suggest that COD, T-N and T-P in water quality of Juam lake were strongly influenced by submerged plants in flood control reservoirs.

Importance of substrate material for sustaining the bryozoan Pectinatella magnifica following summer rainfall in lotic freshwater ecosystems, South Korea

  • Choi, Jong-Yun;Joo, Gea-Jae;Kim, Seong-Ki;Hong, Dong-Gyun;Jo, Hyunbin
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.375-381
    • /
    • 2015
  • We investigated the influence of summer rainfall on Pectinatella magnifica colonies in lotic ecosystems. Of the examined substrate materials, branches and aquatic macrophytes supported more colonies of P. magnifica than that by stones or artificial materials. The influence of rainfall on P. magnifica colonies differed in accordance with the type of substrate material at each study site. In the Geum River, little difference was noted in the number of P. magnifica colonies on branches before ($mean{\pm}SE$, $24{\pm}7.3$ individuals) and after rainfall ($20{\pm}8.4$ ind.); other substrate types supported fewer colonies of P. magnifica after rainfall. In contrast, in the Miryang River, rainfall had minimal effect on the number of P. magnifica colonies supported by macrophytes ($13{\pm}3.8$ and $12{\pm}4.3$ ind., respectively). Artificial material was more abundant in the Banbyeon Stream where it was able to support more colonies of P. magnifica. We found that the structure of different substrates sustains P. magnifica following rainfall. In the Miryang River, free-floating and submerged plants with a relatively heterogeneous substrate surface were the dominant macrophytes, whereas in the Geum River, simple macrophytes (i.e., emergent plants) were dominant. Therefore, we conclude that the substrate type on which P. magnifica grows plays an important role in resisting physical disturbances such as rainfall.

Microbial Colonization of the Aquatic Duckweed, Spirodela polyrhiza, during Development (수생식물 개구리밥 (Spirodela polyrhiza)과 미생물)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.34 no.2
    • /
    • pp.103-111
    • /
    • 2004
  • Fresh specimens of the aquatic macrophyte, Spirodela polyrhiza, have been examined employing scanning and transmission electron microscopy. Observations revealed the occurrence of microbial colonization during development. Submerged parts of the small, free-floating S. polyrhiza body exhibited a variety of microorganisms such as bacteria, cyanobacteria, and diatoms throughout their development. However, immature and/or young plants normally demonstrated much less microbial colonization compared to mature plants. During the study, heavy colonization by the microorganisms was routinely encountered at maturity, especially in the fully developed abaxial fronds and root caps. The mucilaginous layer was shown along the root caps, and the microorganisms appeared to be either clustered or attached to this layer. In contrast, only moderate degrees of colonization were observed in the root, and little to no colonization was observable in the adaxial frond surface. Transmission electron microscopy clearly demonstrated the microbial colonization to be external in the S. polyrhiza specimen examined in the current study. The association between the microorganisms and S. polyrhiza has been considered non-harmful, as no frond senescence and almost no mechanical penetration of the plant by the microorganisms were noticed during the study.