• 제목/요약/키워드: Submerged Stiffened Cylindrical Shell

검색결과 3건 처리시간 0.017초

탄성지지된 기계류에 의해 가진되는 잠수된 보강 원통형 셸의 음향방사 (Acoustic Radiation from a Submerged Stiffened Cylindrical Shell Excited by Resiliently Mounted Machinery)

  • 배수룡;이시복
    • 한국소음진동공학회논문집
    • /
    • 제25권1호
    • /
    • pp.33-39
    • /
    • 2015
  • This paper investigates the underwater acoustic radiation from a periodically stiffened cylindrical shell excited resiliently mounted machinery. Underwater acoustic radiation is important to a submarine. Generally, submarine structure can be modeled as stiffened cylindrical shell immersed in water. Analytical model is derived for the far-field acoustic radiation from machinery installed inside cylindrical shell. The analytical model includes the effect of fluid loading and interactions between periodic ring stiffeners. Transmitted force from machine to a shell through isolator can be different by the impedance of shell. In this paper the effect of a shell impedance for acoustic radiation is investigated. Impedance of a shell should be considered if thickness of a shell is thin.

전달함수법을 이용한 SWATH선의 수중 음향 방사 해석 (Analysis of Underwater Acoustic Radiation of SWATH vessel using Transfer Function Method)

  • 김재호
    • 한국군사과학기술학회지
    • /
    • 제6권2호
    • /
    • pp.20-34
    • /
    • 2003
  • The good sea-keeping capability of the SWATH(Small Waterplane Area Twin Hull) ship has been attractive for research or surveillance vessels. Especially, for the naval ships accomplishing the underwater acoustic missions, it is necessary to access and minimize the underwater radiated noise level generated by the ships. Therefore, acoustic signature management and control are very important topics for these vessels. Underwater radiation pattern in the low frequency range is dominated by the tonals from the vibration of onboard machinery. In this work, the radiated noise level generated by the propulsion machine in the submerged hull is predicted using the transfer function technique and the hull transfer function for the submerged hull is determined by analyzing the longitudinal/circumferential stiffened infinitely long cylindrical shell and considering the empirical database of the previous vessels. It is confirmed that the transfer function technique can give useful information for identifying the noise source and estimating its contribution to the total radiatied noise level.