• Title/Summary/Keyword: Submerged Flow

Search Result 375, Processing Time 0.03 seconds

Experimental study on the discharge coefficient of slope-type and step-type weirs (경사형 및 계단형 보의 유량계수 산정을 위한 실험연구)

  • Kang, Joon Gua;Kim, Jong Tae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.961-969
    • /
    • 2016
  • Due to the recent requirement of installing low-head structures considering environmental aspects, various types of fixed weir have been suggested. However, the design guideline of transverse structures for practical application is very limited. The purpose of the present study is to analyze the hydraulic properties of the fixed weirs installed at the small and middle sized rivers of Korea depending on the physical specifications to provide fundamental data that may be reflected to the design of a low-head fixed weir considering the relevant environmental aspects. The basic discharge coefficient of slope-type and step-type weirs depending on change of crest was estimated, and a stage-discharge curve was developed. In addition, the flow properties under free flow and submerged flow conditions were analyzed by varying the hydraulic conditions such as discharge and crest.

Higher Harmonic Generation by Nonlinear Interaction between Monochromatic Waves and a Horizontal Plate (규칙파와 수평판의 비선형 상호작용에 의한 고차 조화항 발생)

  • Koh, Hyeok-Jun;Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.484-491
    • /
    • 2007
  • Numerical experiments using a numerical wave tank have been performed to verier the nonlinear interaction between monochromatic waves and a submerged horizontal plate. As a model for numerical wave tank, we used a higher-order Boundary Element Method(BEM) based on fully nonlinear potential flow theory and CADMAS-SURF for solving Navier Stokes equations and exact free surface conditions. Both nonlinear models are able to predict the higher harmonic generation in the shallow water region over a submerged horizontal plate. CADMAS-SURF, which involves the viscous effect, can evaluate the higher harmonic generation by flow separation and vortices at the each ends of plate. The comparison of reflection and transmission coefficients with experimental results(Patarapanich and Cheong, 1989) at different lengths and submergence depths of a horizontal plate are presented with a good agreement. It is found that the transfer of energy from the incident fundamental waves to higher harmonics becomes larger as the submergence depth ratio decreases and the length ratio increases.

Solid Substrate and Submerged Culture Fermentation of Sugar Cane Bagasse for the Production of cellulase and Reducing Sugars by a Local Isolate, Aspergillus terreus SUK-1

  • Wan Mohtar, Yusoff;Massadeh, Muhannad Illayan;Kader, Jalil
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.770-775
    • /
    • 2000
  • Several process parameters were studied to ascertain the effect on degradation of sugar cane bagasse in relation to the production of cellulase enzyme and reducing sugars by Solid Substrate Fermentation (SSF) and Submerged Culture Fermentation (SCF) of Aspergillus terreus SUK-1. The effect of air-flow rate (0-1.3 v/v/m), of different ratios of substrate weight to liquid volume (1:6, 1:10, 1:20, and 1:30 w/v, g/ml), scale-up effect (10, 20, and 100 times of 1:10 ration, w/v) and the effect of temperature (30, 40, 50, and $60^{\circ}C$) in SSF were studied. Air-flow rate of 1.0 v/v/m gave the highest enzyme activity (FPase 0.25 IU/ml, CMCase 1.24 IU/ml) and reducing sugars concentration (0.72 mg/ml). Experiment using 1:10 ratio (w/v) was found to support maximum cellulase activity (FPase 0.58 IU/ml, CMCase 1.97 IU/ml) and reducing sugar concentration (1.23 mg/ml). Scaling-up the ratio of 1:10(w/v) by a factor of 20 gave the highest cellulase activity (FPase 0.71 IU/ml, CMCase 2.25 IU/ml) and reducing sugar concentration (3.67 mg/ml). The optimum temperature for cellulase activity and reducing sugar production was $50^{\circ}C$(FPase 0.792 IU/ml, CMCase 2.25 IU/ml and 3.85 mg/ml for reducing sugar concentration). For SCF, the activity of cellulase enzyme and reducing sugar concentration was found to be lower than that obtained for SSF. The highest cellulase activity obtained in SCF was 50% lower than the highest cellulase activity in SSF, while for reducing sugar concentration, the highest concentration obtained in SCF was 90% lower than that obtained in SSF.

  • PDF

Study of Wake Control by Blowing and Suction in Front of the Vertical Fence (수직벽 전방에서의 흡입/토출을 이용한 후류제어 연구)

  • Choi, Young-Ho;Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2008
  • The effect of periodic blowing and suction of upstream flow on the separated shear flow behind the vertical fence was experimentally investigated. The fence was submerged in the turbulent shear flow and DPIV method was used to measure the instantaneous velocity fields around the fence. Periodic blowing and suction flow was precisely generated by the syringe pump. Spanwise nozzle made 2D planar periodic jet flow in front of the fence and the effect of frequency and maximum jet velocity was studied. From the results, the reattachment length can be reduced by 60% of uncontrolled fence case under the control.

Numerical Study of Coherent Vortex in Late Wake Downstream of a Sphere in Weakly Stratified Fluid (잔류내 응집 와류의 수치 해석)

  • Lee, Sung-Su;Lee, Young-Kyu;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1863-1868
    • /
    • 2003
  • Decades of studies of geophysical flow have unveiled that the flow downstream of obstacles in stratified flow consists of attached wake and strong internal waves, or separated, fluctuating wake and persistent late wakes. Among unique and interesting characteristics of the stratified flow past obstacles is the generation of coherent vortex the late wake far downstream of the object. Unlike in homogeneous fluid, the flow field downstream self-develops coherent vortex even after diminishing of the near wake, no matter how small the stratification is. This paper present a computational approach to simulate the generation of the coherent vortex structure in late wake of a moving sphere submerged in weakly stratified fluid. The results are in consistent with several experimental observations and the vortex stretching mechanism is employed to explain the process of coherence.

  • PDF

Flow Analyses around Intake within Sump in a Pump Station (펌프장에서 Sump내 흡입구 주위의 유동해석)

  • Roh Hyung-Woon;Kim Jae-Soo;Suh Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.597-600
    • /
    • 2002
  • In general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank, is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, may introduce air into pump, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. Uneven flow distribution can also increase or decrease the power consumption with a change in total developed head. To avoid these sump problems pump station designers are considered intake structure dimensions, such as approaching upstream, baffle size, sump width, width of pump cell and so on. From this background, flow characteristics of intake within sump are Investigated numerically to obtain the optimal sump design data. The sump model is designed in accordance with HI code.

  • PDF

Sewage Treatment using Aerated Submerged Biological Filter(ASBF) (호기성 침지형 생물막 여과장치를 이용한 오수처리)

  • Park, Jong-Woong;Song, Ju-seok
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.523-532
    • /
    • 2000
  • The purpose of this study was to investigate the effects of the hydraulic retention time (HRT) and organic loading rate (OLR) on microbial characteristics and treatment efficiency in sewage treatment using aerated submerged biological filter (ASBF) reactor. This reactor combines biodegradation of organic substrates by fixed biomass with a physical separation of biomass by filtration in a single reactor. Both simulated wastewater and domestic wastewater were used as feed solutions. The experimental conditions were a temperature of 17 to $27^{\circ}C$, a hydraulic retention time of 1 to 9hr, an organic loading rate of 0.47 to $3.84kg\;BOD/m^3{\cdot}day$ in ASBF reactor. This equipment could obtain a stable effluent quality in spite of high variation of influent loading rate. Total biomass concentration. biofilm thickness and biofilm mass increased an exponential function according to the increasing OLR. The relationships between water content and biofilm density were in inverse proportion. The percentage of backwash water to influent flow was almost 9%. The separation efficiency of biomass was the percentage of 91 to 92 in ASBF reactor. The sludge production rates in feed solutions of simulated wastewater and domestic wastewater were 0.14~0.26 kg VSS/kg BODrem, 0.43~0.48 kg VSS/kg BODrem, respectively.

  • PDF