• 제목/요약/키워드: Sublimation technique

검색결과 109건 처리시간 0.025초

자유유동 난류강도가 터빈 동익 표면에서의 열(물질)전달 특성에 미치는 영향 (Free-Stream Turbulence Effect on the Heat (Mass) Transfer Characteristics on a Turbine Rotor Surface)

  • 이상우;박진재;권현구;박병규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1442-1446
    • /
    • 2004
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is employed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiments are carried out for two free-stream turbulence intensities of 1.2% and 14.7%. The high free-stream turbulence results in more uniform distributions of heat load on the both pressure and suction surfaces and in an early boundary-layer separation on the suction surface. The heat (mass) transfer enhancement on the suction surface due to the endwall vortices is found to be relatively small under the high free-stream turbulence.

  • PDF

서울시(市) 대기중(大氣中) 유해(有害) 부유분진(浮遊粉塵)의 성분(成分) -부유분진(浮遊粉塵)의 중금속(重金屬)에 관하여- (Heavy Metals of the Suspended Particulate in Atmosphere of Seoul City)

  • 권숙표;정용;임동구
    • Journal of Preventive Medicine and Public Health
    • /
    • 제12권1호
    • /
    • pp.49-55
    • /
    • 1979
  • In order to investigate air pollution by heavy metals in Seoul city, the suspended particulates in the atmosphere were sampled with high volume air sampler in industrial area(Ku Ro Dong), commerical(Kwang Hwa Moon) and residential(Shin Chon Dong) from January to November, 1977. The sampled suspended particulates were digested and extracted from suspended particulates with the acidic solution by reflux-extraction technique, and were measured by atomic absorption spectrophotometry. And mercury was measured by mercury analyzer applying the reducing sublimation technique. Among heavy metals analyzed, the iron was identified at the highest level in the suspended particulates and the chromium was the least. Through the surveyed area, the concentration of heavy metals of the industrial area was comparatively high among others and the commercial was the second. It was detected that lead was the most concentrated in the suspended particulate of the commercial area, that might be caused of the traffic emissions. The seasonal variations were analyzed and the correlations among heavy metals and total suspended particulate were also calculated. Especially, the iron was highly correlated with total suspended particulate in all the surveyed areas.

  • PDF

$\alpha$-Sexithienyl 박막의 전기적 특성에 관한 연구 (A study on the Electrical Characteristics of $\alpha$-Sexithiophene Thin Film)

  • 오세운;권오관;최종선;김영관;신동명
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.518-520
    • /
    • 1997
  • Recently, thiophene oligomer with short chain lengths has received much attention as model compounds for facilitating better understanding of electronic and optical properties of polymers, because oligomer is well-defined chemical systems and its conjugation chain length can be exactly controlled. Moreover, organic this films based on conjugated thiophene oligomer have potential for application to electronic and optoelectronic devices such as MISFETs(metal-insulator-semiconductor field-effect transistors) and LEDs(light-emitting diodes). However, there is little knowledge on electronic and structural properties of linear-conjugated oligothiophenes in solid states, compared with those in solutions. $\alpha$-sexithienyl($\alpha$-6T) thin-films were deposited by OMBD(Organic Molecular Beam Deposition) technique, where the $\alpha$-6T was synthesized and purified by the sublimation method. The $\alpha$-6T films were deposited under various conditions. The effects of deposition rate, substrate temperature, and vacuum pressure on the formation of these films have been studied. The molecules in the $\alpha$-6T film deposited at a low deposition rate under a high vacuum were aligned almost perpendicular to the substrate. The $\alpha$-6T films deposited at an elevated substrate temperature showed higher conductivity than the film deposited at room temperature. Electrical characterization of these films will be also executed by using four-point probe measurement technique.

  • PDF

회전하는 터빈 블레이드 내부 이차냉각유로에서 엇갈린요철과 평행요철이 열/물질전달에 미치는 영향 (Effect of Cross/Parallel Rib Configurations on Heat/Mass Transfer in Rotating Two-Pass Turbine Blade Internal Passage)

  • 이세영;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1249-1259
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer inside a cooling passage of rotating gas-turbine blades. The rotating duct has various configurations made of ribs with 70。 attack angle, which are attached on leading and trailing surfaces. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The present experiments employ two-surface heating conditions in the rotating duct because the surfaces, exposed to hot gas stream, are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. In the stationary conditions, the parallel rib arrangement presents higher heat/mass transfer characteristics in the first pass, however, these characteristics disappear in the second pass due to the turning effects. In the rotating conditions, the cross rib present less heat/mass transfer discrepancy between the leading and the trailing surfaces in the first pass. In the second pass, the heat/mass transfer characteristics are much more complex due to the combined effects of the angled ribs, the sharp fuming and the rotation.

유츨 허브를 갖는 HDD내 동시회전디스크 표면에서의 열전달 및 유동특성 해석 (Heat Transfer and Flow Characteristics on Co-rotating Disks with a Ventilation Hub in Hard Disk Drive)

  • 조형희;원정호;류구영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.382-389
    • /
    • 2001
  • In the present study, local heat transfer rates for co-rotating disks with two modified hubs having ventilation holes are investigated for Rossby number of 0.04, 0.1 and 0.35 to evaluate the influence of incoming flows through hub holes. A naphthalene sublimation technique is employed to determine the detailed local heat/mass transfer coefficients on the rotating disks using the heat and mass transfer analogy. Flow field measurements are conducted using Laser Doppler Anemometry (LDA) and numerical calculations are performed simultaneously to analyze the flow patterns induced by the disk rotation. The basic flow structure in a cavity between co-rotating disks consists of three regions; the solid-body rotating inner region, the outer region with turbulence vortices and the shroud boundary layer region. The heat/mass transfer. rates on the co-rotating disks are very low near the hub due to the solid-body rotation and those increase rapidly in the outer region due to turbulence mixing. The modified hubs with ventilation holes enhances significantly the heat/mass transfer rates on the region near the hub. The results also show that the heat transfer of Hub-2 is superior to that of Hub-1, but Hub-1 is more profitable for destructing the solid-body rotating inner region.

  • PDF

터빈 동익 스퀼러팁 표면에서의 열(물질)전달 특성 (Heat/Mass Transfer Characteristics on the Squealer Tip Surface of a Turbine Rotor Blade)

  • 문현석;이상우
    • 한국유체기계학회 논문집
    • /
    • 제12권1호
    • /
    • pp.35-42
    • /
    • 2009
  • The flow and heat/mass transfer characteristics on the squealer tip surface of a high-turning turbine rotor blade have been investigated at a Reynolds number of $2.09{\times}10^5$, by employing the oil-film flow visualization and naphthalene sublimation technique. The squealer rim height-to-chord ratio and tip gap height-to-chord ratio are fixed as typical values of $h_{st}/c$ = 5.5% and h/c = 2.0%, respectively, for turbulence intensities of Tu = 0.3% and 15%. The results show that the near-wall flow phenomena within the cavity of the squealer tip are totally different from those over the plane tip. There are complicated backward flows from the suction side to the pressure side near the cavity floor, in contrast to the plane tip gap flows moving toward the suction side after flow separation/reattachment. The squealer tip provides a significant reduction in tip surface thermal load with less severe gradient compared to the plane tip. In this study, the tip surface is divided into six different regions, and transport phenomena at each region are discussed in detail. The mean thermal load averaged over the squealer cavity floor is augmented by 7.5 percents under the high inlet turbulence level.

이차 냉각 유로를 가진 회전덕트에서 열/물질전달 특성 (II) - 덕트 종횡비에 따른 영향 - (Detailed Measurement of Heat/Mass Transfer in a Rotating Two-Pass Duct (II) - Effects of Duct Aspect Ratio -)

  • 김경민;김윤영;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.921-928
    • /
    • 2004
  • Measurements of local heat/mass transfer coefficients in rotating two-pass ducts are presented. Ducts of three different aspect ratios (W/H), 0.5, 1.0 and 2.0, are employed with a fixed hydraulic diameter ($D_h$) of 26.7 nm. $90^{\circ}$-rib turbulators are attached on the leading and trailing walls symmetrically. The rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.056, and the rib pitch-to-rib height ratio (p/e) is 10. The experimental conditions are the same as those of the previous part of the study. As the rib height-to-duct height ratio (e/H) increases, the core flow is more disturbed and accelerated in the midsections of ribs. Therefore, the obtained data show higher heat/mass transfer in the higher aspect ratio duct. Dean vortices also augment heat/mass transfer in the turn and in the upstream region of the second pass. However, the effect becomes less significant for the higher aspect ratio because the surface area increases in the present geometric condition. The effect of rotation produces heat/mass transfer discrepancy.

원형가이드 설치에 따른 충돌제트/유출냉각에서 열/물질전달 특성 (Heat/Mass Transfer for Impingement/Effusion Cooling System with Circular Guide)

  • 홍성국;조형희
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1147-1154
    • /
    • 2006
  • An experimental investigation was conducted to enhance the heat/mass transfer for impingement/effusion cooling system when the initial crossflow was formed. For the improvement of heat transfer, the circular guide is installed on the injection hole. At the fixed jet Reynolds number of 10,000, the measurements were carried out for blowing ratios ranging from 0.5 to 1.5. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The result presents that the circular guide protects the injected jet from the initial crossflow, increasing the heat/mass transfer. The heat transfer of stagnation region is hardly changed regardless of the blowing ratio. The secondary peak is obviously formed by flow transition to turbulent flow. At high blowing ratio of 1.5, the circular guide produces $26{\sim}30%$ augmentation on the averaged heat/mass transfer while the case without circular guide leads to the low and non-uniform heat/mass transfer. With the increased heat/mass transfer, the installation of circular guide is accompanied by the increase of pressure loss in the channel. However, the pressure drop caused by the circular guide is lower than that for other cooling technique with the circular pin fin.

쐐기형 요철이 설치된 사각덕트에서의 열/물질전달 및 압력강하 특성 (Heat/Mass Transfer and Pressure Drop in A Square Duct with V-Shaped Ribs)

  • 최청;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1542-1551
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer characteristics and pressure drop inside the rib-roughened cooling passage of gas turbine blades. The internal cooling passage is simulated using a square duct with h- and V-shaped rectangular ribs which have a 60。attack angle. A naphthalene sublimation technique is employed to determine the detailed local heat/mass transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wail. The secondary flow patterns and the local heat transfer in the duct are changed significantly according to the rib orientation. A square duct with ∧ - and V-shaped ribs have two pairs of secondary flow due to the rib arrangement. Therefore, the average heat/mass transfer coefficients and pressure drop of ∧ - and V-shaped ribs are higher than those of the continuous ribs with 90$^{\circ}$ and 60$^{\circ}$attack angles. The ∧-shaped ribs have higher heat/mass transfer coefficients than the V-shaped ribs, and the uniformity of heat/mass transfer coefficient are increased with the discrete ribs due to the flow leakage and acceleration near the surface.

쐐기형 요철이 설치된 사각덕트에서의 열전달 및 압력강하 특성 (Heat/Mass Transfer and Pressure Drop of Square Duct with V-shape Ribs)

  • 최청;이동호;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.280-287
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside the rib-roughened cooling passage of the gas turbine blades. A square duct with rectangular ribs is used and $\wedge-$ and V-shape ribs with $60^{\circ}$ attack angle are installed on the test plate surfaces. Naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wall and the vortices near the side-wall. The local heat transfer and the secondary flow in the duct are changed largely according to the rib orientation. A square duct with $\wedge$ and V-shape ribs has two pairs of secondary flow because of the rib arrangement. So, the duct has complex heat/mass transfer distribution. The average heat/mass transfer coefficient and pressure drop of $\wedge-$ and V-shape ribs are higher than those with $90^{\circ}$ and $60^{\circ}$ attack angles. The average heat/mass transfer coefficient on the $\wedge-shape$ ribs is higher than that on the V-shape ribs. Also, the uniformity of heat/mass transfer coefficient on discrete ribs is higher than that on continuous rib.

  • PDF