• Title/Summary/Keyword: Sublimation technique

Search Result 109, Processing Time 0.022 seconds

A Study on the Local Heat Transfer Characteristics for Circular Tubes Using Heat Transfer Promoter (열전달촉진체를 사용한 원관에서의 국소열전달 특성에 관한 연구)

  • Kwon Hwa-Kil;Yoo Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.389-396
    • /
    • 2006
  • For the successful design of heat exchangers, it is very important to understand local heat transfer phenomena on the circular tube of heat exchangers. In the present study, experiments are performed for single circular tube and tube banks with and without heat transfer promoters. The naphthalene sublimation technique is employed to measure the local mass transfer coefficients, and the measured local mass transfer data are converted to the local heat transfer data using heat and mass transfer analogy. The distribution pattern of local Nusselt numbers on single circular tube with heat transfer promoters is similar to that without the heat transfer promoter, but average Nusselt numbers are greatly increased. In case of tube banks without the heat transfer promoter, the Nusselt numbers are much lower in the first row than those of other rows, but the local heat transfer coefficients on all rows are equalized when the heat transfer promoter is installed.

Diameter Expansion of 6H-SiC Single Crystals by the Modification of Crucible Structure Design (도가니 구조 변경을 통한 6H-SiC 단결정의 직경 확장에 관한 연구)

  • Kim, Jung-Gyu;Kyun, Myung-Ok;Seo, Jung-Doo;An, Joon-Ho;Kim, Jung-Gon;Ku, Kap-Ryeol;Lee, Won-Jae;Kim, Il-Soo;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.673-679
    • /
    • 2006
  • A sublimation method using the SiC seed crystal and SiC powder as the source material is commonly adopted to grow SiC bulk single crystal. However, it has proved to be difficult to achieve the high quality crystal and the process reliability because SiC single crystal should be grown at very high temperature in closed system. In this study, SiC crystal boules were prepared with different angles in trapezoid-shaped graphite seed holders using sublimation physical vapor transport technique (PVT) and then their crystal quality was systematically investigated. The temperature distribution in the growth system and the crystal shape were varied with angles in trapezoid-shaped graphite seed holders, which was successfully simulated using 'Virtual Reactor'. The SiC polytype proved to be the n-type 6H-SiC from the typical absorption spectrum of SiC crystal. The micropipe densities of SiC wafers in this study were measured to be < $100/cm^2$. Consequently, SiC single crystal with large diameter was successfully achieved with changing angle in trapezoid-shaped graphite seed holders.

Detailed Measurement of Heat/Mass Transfer in a Rotating Equilateral Triangular Channel with Smooth Walls (회전하는 매끈한 정삼각 유로 내 열/물질전달 분포 측정)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.628-634
    • /
    • 2007
  • The present study investigated the heat/mass transfer characteristics in an equilateral triangular channel simulating the leading edge cooling passage in gas turbine blade. Using naphthalene sublimation method and pressure measurement experiments, local mass (heat) transfer and pressure coefficients were obtained. The experiments were conducted with three rotating numbers between 0.0 and 0.1; two channel orientations of $0^{\circ}$ (model A) and $30^{\circ}$ (model B); the fixed Reynolds number of 10,000. The results showed that the channel rotation caused the heat transfer discrepancy between suction and pressure sides. Due to the secondary flow induced by Coriolis force, the high heat transfer appeared on the pressure side. When the channel orientation was $30^{\circ}$ (model B), the secondary flow caused the more uniform heat transfer distribution among leading edge and inner wall on pressure side than that of the model A.

Epitaxial Layer Growth of p-type 4H-SiC(0001) by the CST Method and Electrical Properties of MESFET Devices with Epitaxially Grown Layers (CST 승화법을 이용한 p-type 4H-SiC(0001) 에픽텍셜층 성장과 이를 이용한 MESFET 소자의 전기적 특성)

  • Lee, Gi-Sub;Park, Chi-Kwon;Lee, Won-Jae;Shin, Byoung-Chul;Nishino, Shigehiro
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1056-1061
    • /
    • 2007
  • A sublimation epitaxial method, referred to as the Closed Space Technique (CST) was adopted to produce thick SiC epitaxial layers for power device applications. In this study, we aimed to systematically investigate surface morphologies and electrical properties of SiC epitaxial layers grown with varying a SiC/Al ratio in a SiC source powder during the sublimation growth using the CST method. The surface morphology was dramatically changed with varying the SiC/Al ratio. When the SiC/Al ratio of 90/1 was used, the step bunching was not observed in this magnification and the ratio of SiC/Al is an optimized range to grow of p-type SiC epitaxial layer. It was confirmed that the acceptor concentration of epitaxial layer was continuously decreased with increasing the SiC/Al ratio. 4H-SiC MESFETs haying a micron-gate length were fabricated using a lithography process and their current-voltage performances were characterized. It was confirmed that the increase of the negative voltage applied on the gate reduced the drain current, showing normal operation of FET device.

Growth and characterites for CdSe single crystal grown by using sublimation method (승화법에 의한 CdSe 성장과 특성)

  • Hong, Kwang-Joon;Baek, Seung-Nam;Hong, Myung-Suk;Kim, Do-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.180-181
    • /
    • 2006
  • CdSe single crystal was grown by sublimation method in the two-step vertical electric furnace. This CdSe single crustal had hexagonal structure whose lattice constants of $a_0$ and $c_0$ were measured $4.299\;{\AA}$ and $7.009\;{\AA}$ by extrapolation method, respectively. CdSe single crystal was n-type semiconductor values were measured from Hall data by Van der Pauw method in the room temperature. Mobility tends to increase in proportion to $T^{3/2}$ from 33K to 130K due to impurity scattering. but mobility tends to decrease in proprtion to $T^{-3/2}$ from 130K to 293K due to lattice scattering. CdSe thin film was made by electron beam evaporation technique had also hexagonal structure. The grain size of this thin film was grown to $1{\mu}m$ as a result of annealing in the vapor of Ar or Cd. Annealde CdSe thin film was n-type semiconductor whose carrier density had about $7{\times}10^{12}cm^{-3}$ and its mobility had about $1.6{\times}10^3cm^2/V$ sec at room temperature.

  • PDF

Experimental Study on Local Mass Transfer Characteristics of Flat Plate Using Tripping Wire (트리핑 와이어를 사용한 평판에서의 국소물질전달 특성에 관한 실험적 연구)

  • Yoo, Seong-Yeon;Cho, Woong-Sun;Jo, Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.285-292
    • /
    • 2013
  • The purpose of this research is to investigate how the boundary layer separation caused by a tripping wire installed in front of the flat plate affects the transition from laminar to turbulent flow, and consequently mass transfer. A naphthalene sublimation technique is used to measure the local mass transfer coefficients on the flat plate, and two boundary conditions for the developed and developing flow are considered to evaluate the effects of the flow boundary. The local mass transfer data for a flat plate with a tripping wire are compared with the data for a flat plate without a tripping wire. The variation trends of the local heat transfer coefficients for the plates with and without the tripping wire are similar to each other in the case of the developing flow, but are quite different for the developed flow. The average Sherwood number for the flat plate with a tripping wire is much higher than that without a tripping wire because of the boundary layer separation.

Experimental study to enhance cooling effects on total-coverage combustor wall (연소기 내벽의 전면 막냉각 사용시 효율 증대에 관한 연구)

  • Cho, Hyung-Hee;Goldstein, Richard J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.165-173
    • /
    • 1997
  • The present study investigates heat/mass transfer for flow through perforated plates for application to combustor wall and turbine blade film cooling. The experiments are conducted for hole length to diameter ratios of 0.68 to 1.5, for hole pitch-to-diameter ratios of 1.5 and 3.0, for gap distance between two parallel perforated plates of 1 to 3 hole diameters, and for Reynolds numbers of 60 to 13, 700. Local heat/mass transfer coefficients near and inside the cooling holes are obtained using a naphthalene sublimation technique. Detailed knowledge of the local transfer coefficients is essential to analyze thermal stress in turbine components. The results indicate that the heat/mass transfer coefficients inside the hole surface vary significantly due to flow separation and reattachment. The transfer coefficient near the reattachment point is about four and half times that for a fully developed circular tube flow. The heat/mass transfer coefficient on the leeward surface has the same order as that on the windward surface because of a strong recirculation flow between neighboring jets from the array of holes. For flow through two perforated plate layers, the transfer coefficients on the target surface (windward surface of the second wall) affected by the gap spacing are approximately three to four times higher than that with a single layer.

Heat (mass) transfer measurement and analysis with flows around film cooling holes and circular cylinders (막냉각홀 주위와 원형돌출봉 주위에서의 열(물질)전달의 측정과 해석)

  • Kim, B.G.;Wu, S. J.;Cho,H. H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1485-1495
    • /
    • 1997
  • The present study investigates heat/mass transfer around film cooling jets and circular cylinders to compare the characteristics of each other. Experiments are conducted to obtain the detailed heat/mass transfer coefficients of flat plate with injections through an array of holes and for flows around an array of protruding circular cylinders using the naphthalene sublimation technique. The inclination angles of cylinders are set to the same ones of jets; a, the angle between the jet and the surface is fixed at 30 deg. through the whole experiments and .betha., the angle between the projection of the jet on the surface and the direction of main stream is adjusted to 0 deg., 45 deg. and 90 deg. to investigate the effect of variation of injection angles. The influence of blowing rates of jets and those of cylinder length to diameter ratios are also investigated. The results indicate that the increase of angle .betha. influences the spanwise uniformity of heat/mass transfer remarkably for both jets and cylinders, but that variation of cylinder length to diameter ratios has weaker effects on heat/mass transfer coefficients than that of blowing rates.

An Experimental Study of Local Mass Transfer Characteristics on Inclined Flat Plate (경사진 평판에서의 국소물질전달 특성에 관한 실험적 연구)

  • Yoo, Seong-Yeon;Jo, Woo-Sik;Cho, Woong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1335-1341
    • /
    • 2011
  • The purpose of this research is to investigate how separated and reattached flow affects mass transfer, by comparing the local mass transfer characteristics on an inclined flat plate with those on a parallel flat plate. The local mass transfer coefficients for the flat plate were measured using the naphthalene sublimation technique; the inclined angle of the flat plate was varied from $-10^{\circ}$ to $10^{\circ}$ at $5^{\circ}$ intervals, and the free-stream velocity was varied from 2m/s to 15m/s. At positive inclined angles, the local Sherwood numbers decreased gradually because the boundary-layer thickness increased. On the other hand, for negative inclined angles, the local Sherwood numbers assumed the minimum value at the separation point of the recirculation flow and the maximum value at the reattachment point. The average Sherwood numbers for both positive and negative inclined angles were lower than those in the case of the parallel plate.

Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface (베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.27-38
    • /
    • 2005
  • The present study investigated the effect of relative position of the blade on blade surface heat transfer. The experiments were conducted in a low speed wind tunnel with a stationary annular turbine cascade. The test section has a single turbine stage composed of sixteen guide vanes and blades. The chord length of the blade is 150 mm and the mean tip clearance of the blade is $2.5\%$ of the blade chord. The Reynolds number based on blade inlet velocity and chord length is $1.5{\times}105$ and mean turbulence intensity is about $3\%$. To investigate the effect of relative position of blade, the blade at six different positions in a pitch was examined. For the detailed mass transfer measurements, a naphthalene sublimation technique was used. In general, complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as a laminar flow separation, relaminarization, flow acceleration, transition to turbulence and tip leakage vortices. The results show that the blade relative position affects those heat transfer characteristics because the distributions of incoming flow velocity and turbulence intensity are changed. Especially, the heat transfer pattern on the near-tip region is significantly affected by the relative position of the blade because the effect of tip leakage vortex is strongly dependent on the blade position. On the pressure side, the effect of blade position is not so significant as on the suction side surface although the position and the size of the separation bubble are changed.