• Title/Summary/Keyword: Subjective learning

Search Result 321, Processing Time 0.025 seconds

Image-Based Automatic Bridge Component Classification Using Deep Learning (딥러닝을 활용한 이미지 기반 교량 구성요소 자동분류 네트워크 개발)

  • Cho, Munwon;Lee, Jae Hyuk;Ryu, Young-Moo;Park, Jeongjun;Yoon, Hyungchul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.751-760
    • /
    • 2021
  • Most bridges in Korea are over 20 years old, and many problems linked to their deterioration are being reported. The current practice for bridge inspection mainly depends on expert evaluation, which can be subjective. Recent studies have introduced data-driven methods using building information modeling, which can be more efficient and objective, but these methods require manual procedures that consume time and money. To overcome this, this study developed an image-based automaticbridge component classification network to reduce the time and cost required for converting the visual information of bridges to a digital model. The proposed method comprises two convolutional neural networks. The first network estimates the type of the bridge based on the superstructure, and the second network classifies the bridge components. In avalidation test, the proposed system automatically classified the components of 461 bridge images with 96.6 % of accuracy. The proposed approach is expected to contribute toward current bridge maintenance practice.

Corneal Ulcer Region Detection With Semantic Segmentation Using Deep Learning

  • Im, Jinhyuk;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.1-12
    • /
    • 2022
  • Traditional methods of measuring corneal ulcers were difficult to present objective basis for diagnosis because of the subjective judgment of the medical staff through photographs taken with special equipment. In this paper, we propose a method to detect the ulcer area on a pixel basis in corneal ulcer images using a semantic segmentation model. In order to solve this problem, we performed the experiment to detect the ulcer area based on the DeepLab model which has the highest performance in semantic segmentation model. For the experiment, the training and test data were selected and the backbone network of DeepLab model which set as Xception and ResNet, respectively were evaluated and compared the performances. We used Dice similarity coefficient and IoU value as an indicator to evaluate the performances. Experimental results show that when 'crop & resized' images are added to the dataset, it segment the ulcer area with an average accuracy about 93% of Dice similarity coefficient on the DeepLab model with ResNet101 as the backbone network. This study shows that the semantic segmentation model used for object detection also has an ability to make significant results when classifying objects with irregular shapes such as corneal ulcers. Ultimately, we will perform the extension of datasets and experiment with adaptive learning methods through future studies so that they can be implemented in real medical diagnosis environment.

Predicting Future ESG Performance using Past Corporate Financial Information: Application of Deep Neural Networks (심층신경망을 활용한 데이터 기반 ESG 성과 예측에 관한 연구: 기업 재무 정보를 중심으로)

  • Min-Seung Kim;Seung-Hwan Moon;Sungwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.85-100
    • /
    • 2023
  • Corporate ESG performance (environmental, social, and corporate governance) reflecting a company's strategic sustainability has emerged as one of the main factors in today's investment decisions. The traditional ESG performance rating process is largely performed in a qualitative and subjective manner based on the institution-specific criteria, entailing limitations in reliability, predictability, and timeliness when making investment decisions. This study attempted to predict the corporate ESG rating through automated machine learning based on quantitative and disclosed corporate financial information. Using 12 types (21,360 cases) of market-disclosed financial information and 1,780 ESG measures available through the Korea Institute of Corporate Governance and Sustainability during 2019 to 2021, we suggested a deep neural network prediction model. Our model yielded about 86% of accurate classification performance in predicting ESG rating, showing better performance than other comparative models. This study contributed the literature in a way that the model achieved relatively accurate ESG rating predictions through an automated process using quantitative and publicly available corporate financial information. In terms of practical implications, the general investors can benefit from the prediction accuracy and time efficiency of our proposed model with nominal cost. In addition, this study can be expanded by accumulating more Korean and international data and by developing a more robust and complex model in the future.

Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis

  • Chenggong Yan;Jie Lin;Haixia Li;Jun Xu;Tianjing Zhang;Hao Chen;Henry C. Woodruff;Guangyao Wu;Siqi Zhang;Yikai Xu;Philippe Lambin
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.983-993
    • /
    • 2021
  • Objective: To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis. Materials and Methods: Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively. Results: With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT. Conclusion: The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.

Improving Diagnostic Performance of MRI for Temporal Lobe Epilepsy With Deep Learning-Based Image Reconstruction in Patients With Suspected Focal Epilepsy

  • Pae Sun Suh;Ji Eun Park;Yun Hwa Roh;Seonok Kim;Mina Jung;Yong Seo Koo;Sang-Ahm Lee;Yangsean Choi;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.374-383
    • /
    • 2024
  • Objective: To evaluate the diagnostic performance and image quality of 1.5-mm slice thickness MRI with deep learningbased image reconstruction (1.5-mm MRI + DLR) compared to routine 3-mm slice thickness MRI (routine MRI) and 1.5-mm slice thickness MRI without DLR (1.5-mm MRI without DLR) for evaluating temporal lobe epilepsy (TLE). Materials and Methods: This retrospective study included 117 MR image sets comprising 1.5-mm MRI + DLR, 1.5-mm MRI without DLR, and routine MRI from 117 consecutive patients (mean age, 41 years; 61 female; 34 patients with TLE and 83 without TLE). Two neuroradiologists evaluated the presence of hippocampal or temporal lobe lesions, volume loss, signal abnormalities, loss of internal structure of the hippocampus, and lesion conspicuity in the temporal lobe. Reference standards for TLE were independently constructed by neurologists using clinical and radiological findings. Subjective image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were analyzed. Performance in diagnosing TLE, lesion findings, and image quality were compared among the three protocols. Results: The pooled sensitivity of 1.5-mm MRI + DLR (91.2%) for diagnosing TLE was higher than that of routine MRI (72.1%, P < 0.001). In the subgroup analysis, 1.5-mm MRI + DLR showed higher sensitivity for hippocampal lesions than routine MRI (92.7% vs. 75.0%, P = 0.001), with improved depiction of hippocampal T2 high signal intensity change (P = 0.016) and loss of internal structure (P < 0.001). However, the pooled specificity of 1.5-mm MRI + DLR (76.5%) was lower than that of routine MRI (89.2%, P = 0.004). Compared with 1.5-mm MRI without DLR, 1.5-mm MRI + DLR resulted in significantly improved pooled accuracy (91.2% vs. 73.1%, P = 0.010), image quality, SNR, and CNR (all, P < 0.001). Conclusion: The use of 1.5-mm MRI + DLR enhanced the performance of MRI in diagnosing TLE, particularly in hippocampal evaluation, because of improved depiction of hippocampal abnormalities and enhanced image quality.

Long-term runoff simulation using rainfall LSTM-MLP artificial neural network ensemble (LSTM - MLP 인공신경망 앙상블을 이용한 장기 강우유출모의)

  • An, Sungwook;Kang, Dongho;Sung, Janghyun;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • Physical models, which are often used for water resource management, are difficult to build and operate with input data and may involve the subjective views of users. In recent years, research using data-driven models such as machine learning has been actively conducted to compensate for these problems in the field of water resources, and in this study, an artificial neural network was used to simulate long-term rainfall runoff in the Osipcheon watershed in Samcheok-si, Gangwon-do. For this purpose, three input data groups (meteorological observations, daily precipitation and potential evapotranspiration, and daily precipitation - potential evapotranspiration) were constructed from meteorological data, and the results of training the LSTM (Long Short-term Memory) artificial neural network model were compared and analyzed. As a result, the performance of LSTM-Model 1 using only meteorological observations was the highest, and six LSTM-MLP ensemble models with MLP artificial neural networks were built to simulate long-term runoff in the Fifty Thousand Watershed. The comparison between the LSTM and LSTM-MLP models showed that both models had generally similar results, but the MAE, MSE, and RMSE of LSTM-MLP were reduced compared to LSTM, especially in the low-flow part. As the results of LSTM-MLP show an improvement in the low-flow part, it is judged that in the future, in addition to the LSTM-MLP model, various ensemble models such as CNN can be used to build physical models and create sulfur curves in large basins that take a long time to run and unmeasured basins that lack input data.

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.

Effect of Bright Light Exposure on Adaptation to Rapid Night Shift : A Field Study of Shift Work Nurses in Psychiatric Ward (순환제교대근무자에서 야간 근무 적응에 대한 광치료 효과)

  • Ko, Young-Hoon;Joe, Sook-Haeng
    • Sleep Medicine and Psychophysiology
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2002
  • Objectives: In a number of simulated night shift studies, timed exposure to bright light improves sleep quality and work performance. We evaluated the effect of bright light on adaptation to night shift work with a field study. Methods: Five female nurses working shifts at Korea University Hospital were recruited for participation in this study. We investigated two series of six consecutive shift rotations comprising three day and three night shifts, using wrist Actigraphy, the Stanford Sleepiness Scale, Visual-analogue scales, STIM and tympanic membrane temperature for daytime sleep quality, alertness, subjective feeling, attention performance, and temperature rhythm. The subjects were exposed to bright light (2,500 lux) from 24:00 to 04:00 a.m. on three consecutive night shifts during the second series, whereas they worked under normal lightening (650 lux) conditions during the first series. Results: Actigraphic assessment of daytime sleep showed no significant difference between the first and third night shift in both baseline and light exposure phase. The mean lowest temperature shifted earlier during baseline phase but not during the light exposure phase. Also, the score for subjective feelings of depression, anxiety, physical discomfort and sleepiness was significantly higher in the third night shift than the first during baseline phase but not during the light exposure phase. Attention and attention switching ability was significantly improved in the third night shift compared to the first night during the light exposure phase but there were no significant changes during the baseline phase. Conclusion: This result suggests that there were no significant differences between the two phases in measures of quality of daytime sleep, but subjective feelings, attention and alertness were enhanced during light exposure. Although some placebo effects and learning effects might influence this result, bright light exposure between midnight and 4:00 a.m. may improve adaptation to night shift. In future, further controlled studies with a larger sample size, including melatonin measurement, are needed for real shift workers.

  • PDF

ICT Medical Service Provider's Knowledge and level of recognizing how to cope with fire fighting safety (ICT 의료시설 기반에서 종사자의 소방안전 지식과 대처방법 인식수준)

  • Kim, Ja-Sook;Kim, Ja-Ok;Ahn, Young-Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.51-60
    • /
    • 2014
  • In this study, ICT medical service provider's level of knowledge fire fighting safety and methods on coping with fires in the regions of Gwangju and Jeonam Province of Korea were investigated to determine the elements affecting such levels and provide basic information on the manuals for educating how to cope with the fire fighting safety in medical facilities. The data were analyzed using SPSS Win 14.0. The scores of level of knowledge fire fighting safety of ICT medical service provider's were 7.06(10 point scale), and the scores of level of recognizing how to cope with fire fighting safety were 6.61(11 point scale). level of recognizing how to cope with fire fighting safety were significantly different according to gender(t=4.12, p<.001), age(${\chi}^2$=17.24, p<.001), length of career(${\chi}^2$=22.76, p<.001), experience with fire fighting safety education(t=6.10, p<.001), level of subjective knowledge on fire fighting safety(${\chi}^2$=53.83, p<.001). In order to enhance the level of understanding of fire fighting safety and methods of coping by the ICT medical service providers it is found that: self-directed learning through avoiding the education just conveying knowledge by lecture tailored learning for individuals fire fighting education focused on experiencing actual work by developing various contents emphasizing cooperative learning deploying patients by classification systems using simulations and a study on the implementation of digital anti-fire monitoring system with multipoint communication protocol, a design and development of the smoke detection system using infra-red laser for fire detection in the wide space, video based fire detection algorithm using gaussian mixture mode developing an education manual for coping with fire fighting safety through multi learning approach at the medical facilities are required.

SURVEY OF SELF-CONCEPT AND DEPRESSION-ANXIETY OF THE ELEMENTARY SCHOOL BOYS WITH LEARNING DISABILITIES (학습장애를 가진 초등학교 남학생의 자아상 개념과 우울-불안 특성 조사)

  • Kim, Bong-Soo;Seong, Deock-Kyu;Jung, Yeong;Yoo, Hee-Jung;Cho, Soo-Churl;Shin, Sung-Woong
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.12 no.1
    • /
    • pp.125-137
    • /
    • 2001
  • We investigated the self-concept, subjective depression, and state-trait anxiety of the school boys with learning disabilities(abbr. LD, n=86) and compared them with normal boys(n=52) using Piers-Harris Self-Concept Inventory, Child Depression Inventory(abbr. CDI), and State-Trait Anxiety Inventory(abbr. STAI). With regard to Piers-Harris Self-Concept Inventory total scores, there was no significant difference between two groups, but normal boys showed higher scores in intellectual and school status, physical appearance, and happiness-satisfaction subscales than patients with LD. The male patients with LD showed significantly higher ratings in CDI total scores, and CDI subscales - ineffectiveness, anhedonia, negative self-esteem than normal children. The patients with LD reported significantly higher state anxiety, but not trait anxiety. Correlation analyses revealed that self-concept decreased over time, and depression-anxiety increased across grades in the patients with LD, but not in normal children. Especially, negative mood, anhedonia, negative self-esteem subscales of CDI, and state-trait anxiety showed significant positive correlation with grades. In both groups, CDI scores were inversely correlated with Piers-Harris Self-Concept and positively with State-Trait anxiety. In conclusion, self-concept problems which were related with school achievement and self-esteem were more abundant in the patients with LD than normal children, self-image problem, depression and anxiety increased across grades. According to regression analysis, age, behavior subscale, intellectual-school status, anxiety, popularity, happiness-satisfaction, CDI-ineffectiveness, interpersonal problem, negative self-esteem, and state anxiety could explain the self-concept in the patients with LD, not in normal children. So, the self-concept of the patients with LD were found to be related to the school achievement and stress when comparing with peers. In conclusion, elementary school boys with LD showed lower self-concept, higher depression and anxiety, and these differences increased across grades. Since the patients with LD have concomitant depression and anxiety disorders, it is important that comorbidity with emotional problems should be explored and managed properly.

  • PDF