• Title/Summary/Keyword: Subjective learning

Search Result 321, Processing Time 0.026 seconds

WDENet: Wavelet-based Detail Enhanced Image Denoising Network (Wavelet 기반의 영상 디테일 향상 잡음 제거 네트워크)

  • Zheng, Jun;Wee, Seungwoo;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.725-737
    • /
    • 2021
  • Although the performance of cameras is gradually improving now, there are noise in the acquired digital images from the camera, which acts as an obstacle to obtaining high-resolution images. Traditionally, a filtering method has been used for denoising, and a convolutional neural network (CNN), one of the deep learning techniques, has been showing better performance than traditional methods in the field of image denoising, but the details in images could be lost during the learning process. In this paper, we present a CNN for image denoising, which improves image details by learning the details of the image based on wavelet transform. The proposed network uses two subnetworks for detail enhancement and noise extraction. The experiment was conducted through Gaussian noise and real-world noise, we confirmed that our proposed method was able to solve the detail loss problem more effectively than conventional algorithms, and we verified that both objective quality evaluation and subjective quality comparison showed excellent results.

Developing the Automated Sentiment Learning Algorithm to Build the Korean Sentiment Lexicon for Finance (재무분야 감성사전 구축을 위한 자동화된 감성학습 알고리즘 개발)

  • Su-Ji Cho;Ki-Kwang Lee;Cheol-Won Yang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.32-41
    • /
    • 2023
  • Recently, many studies are being conducted to extract emotion from text and verify its information power in the field of finance, along with the recent development of big data analysis technology. A number of prior studies use pre-defined sentiment dictionaries or machine learning methods to extract sentiment from the financial documents. However, both methods have the disadvantage of being labor-intensive and subjective because it requires a manual sentiment learning process. In this study, we developed a financial sentiment dictionary that automatically extracts sentiment from the body text of analyst reports by using modified Bayes rule and verified the performance of the model through a binary classification model which predicts actual stock price movements. As a result of the prediction, it was found that the proposed financial dictionary from this research has about 4% better predictive power for actual stock price movements than the representative Loughran and McDonald's (2011) financial dictionary. The sentiment extraction method proposed in this study enables efficient and objective judgment because it automatically learns the sentiment of words using both the change in target price and the cumulative abnormal returns. In addition, the dictionary can be easily updated by re-calculating conditional probabilities. The results of this study are expected to be readily expandable and applicable not only to analyst reports, but also to financial field texts such as performance reports, IR reports, press articles, and social media.

A Novel, Deep Learning-Based, Automatic Photometric Analysis Software for Breast Aesthetic Scoring

  • Joseph Kyu-hyung Park;Seungchul Baek;Chan Yeong Heo;Jae Hoon Jeong;Yujin Myung
    • Archives of Plastic Surgery
    • /
    • v.51 no.1
    • /
    • pp.30-35
    • /
    • 2024
  • Background Breast aesthetics evaluation often relies on subjective assessments, leading to the need for objective, automated tools. We developed the Seoul Breast Esthetic Scoring Tool (S-BEST), a photometric analysis software that utilizes a DenseNet-264 deep learning model to automatically evaluate breast landmarks and asymmetry indices. Methods S-BEST was trained on a dataset of frontal breast photographs annotated with 30 specific landmarks, divided into an 80-20 training-validation split. The software requires the distances of sternal notch to nipple or nipple-to-nipple as input and performs image preprocessing steps, including ratio correction and 8-bit normalization. Breast asymmetry indices and centimeter-based measurements are provided as the output. The accuracy of S-BEST was validated using a paired t-test and Bland-Altman plots, comparing its measurements to those obtained from physical examinations of 100 females diagnosed with breast cancer. Results S-BEST demonstrated high accuracy in automatic landmark localization, with most distances showing no statistically significant difference compared with physical measurements. However, the nipple to inframammary fold distance showed a significant bias, with a coefficient of determination ranging from 0.3787 to 0.4234 for the left and right sides, respectively. Conclusion S-BEST provides a fast, reliable, and automated approach for breast aesthetic evaluation based on 2D frontal photographs. While limited by its inability to capture volumetric attributes or multiple viewpoints, it serves as an accessible tool for both clinical and research applications.

Development of Diagnosis Application for Rail Surface Damage using Image Analysis Techniques (이미지 분석기법을 이용한 레일표면손상 진단애플리케이션 개발)

  • Jung-Youl Choi;Dae-Hui Ahn;Tae-Jun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.511-516
    • /
    • 2024
  • The recently enacted detailed guidelines on the performance evaluation of track facilities presented the necessary requirements regarding the evaluation procedures and implementation methods of track performance evaluation. However, the grade of rail surface damage is determined by external inspection (visual inspection), and there is no choice but to rely only on qualitative evaluation based on the subjective judgment of the inspector. Therefore, in this study, we attempted to develop a diagnostic application that can diagnose rail internal defects using rail surface damage. In the field investigation, rail surface damage was investigated and patterns were analyzed. Additionally, in the indoor test, SEM testing was used to construct image data of rail internal damage, and crack length, depth, and angle were quantified. In this study, a deep learning model (Fast R-CNN) using image data constructed from field surveys and indoor tests was applied to the application. A rail surface damage diagnosis application (App) using a deep learning model that can be used on smart devices was developed. We developed a smart diagnosis system for rail surface damage that can be used in future track diagnosis and performance evaluation work.

Deep learning to assess bone quality from panoramic radiographs: the feasibility of clinical application through comparison with an implant surgeon and cone-beam computed tomography

  • Jae-Hong Lee;Jeong-Ho Yun;Yeon-Tae Kim
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.5
    • /
    • pp.349-358
    • /
    • 2024
  • Purpose: Bone quality is one of the most important clinical factors for the primary stability and successful osseointegration of dental implants. This preliminary pilot study aimed to evaluate the clinical applicability of deep learning (DL) for assessing bone quality using panoramic (PA) radiographs compared with an implant surgeon's subjective tactile sense and cone-beam computed tomography (CBCT) values. Methods: In total, PA images of 2,270 edentulous sites for implant placement were selected, and the corresponding CBCT relative gray value measurements and bone quality classification were performed using 3-dimensional dental image analysis software. Based on the pre-trained and fine-tuned ResNet-50 architecture, the bone quality classification of PA images was classified into 4 levels, from D1 to D4, and Spearman correlation analyses were performed with the implant surgeon's tactile sense and CBCT values. Results: The classification accuracy of DL was evaluated using a test dataset comprising 454 cropped PA images, and it achieved an area under the receiving characteristic curve of 0.762 (95% confidence interval [CI], 0.714-0.810). Spearman correlation analysis of bone quality showed significant positive correlations with the CBCT classification (r=0.702; 95% CI, 0.651-0.747; P<0.001) and the surgeon's tactile sense (r=0.658; 95% CI, 0.600-0.708, P<0.001) versus the DL classification. Conclusions: DL classification using PA images showed a significant and consistent correlation with CBCT classification and the surgeon's tactile sense in classifying the bone quality at the implant placement site. Further research based on high-quality quantitative datasets is essential to increase the reliability and validity of this method for actual clinical applications.

Study on Feedback Networks for Enhanced Image Super-Resolution (이미지 초해상도 향상을 위한 피드백 네트워크 연구)

  • Hunsuk Chung;Jaehyeok Hur;Sumi Yang;Seongbeom Kwak
    • Journal of Practical Engineering Education
    • /
    • v.16 no.5_spc
    • /
    • pp.611-618
    • /
    • 2024
  • The rapid advancement of deep learning has significantly enhanced the performance of single image super-resolution (SR). However, most existing deep learning-based image SR networks only facilitate information flow in the forward direction, which limits their performance. In this study, we investigate a feedback network for precise image SR. This feedback network effectively enhances lower-level feature representation by rerouting multiple higher-level features. We sequentially construct several Residual Density Modules and deploy them repeatedly over time. Multiple feedback connections between two adjacent time steps leverage high-level features captured within a large receptive field to refine low-level features lacking sufficient contextual information. A carefully designed feedback module efficiently selects and enhances valuable information from the rerouted high-level features, thereby improving low-level features with enriched high-level information. Extensive experiments demonstrate that the proposed method outperforms existing approaches in both objective and subjective evaluations.

Deep Learning-Based Reconstruction Algorithm With Lung Enhancement Filter for Chest CT: Effect on Image Quality and Ground Glass Nodule Sharpness

  • Min-Hee Hwang;Shinhyung Kang;Ji Won Lee;Geewon Lee
    • Korean Journal of Radiology
    • /
    • v.25 no.9
    • /
    • pp.833-842
    • /
    • 2024
  • Objective: To assess the effect of a new lung enhancement filter combined with deep learning image reconstruction (DLIR) algorithm on image quality and ground-glass nodule (GGN) sharpness compared to hybrid iterative reconstruction or DLIR alone. Materials and Methods: Five artificial spherical GGNs with various densities (-250, -350, -450, -550, and -630 Hounsfield units) and 10 mm in diameter were placed in a thorax anthropomorphic phantom. Four scans at four different radiation dose levels were performed using a 256-slice CT (Revolution Apex CT, GE Healthcare). Each scan was reconstructed using three different reconstruction algorithms: adaptive statistical iterative reconstruction-V at a level of 50% (AR50), Truefidelity (TF), which is a DLIR method, and TF with a lung enhancement filter (TF + Lu). Thus, 12 sets of reconstructed images were obtained and analyzed. Image noise, signal-to-noise ratio, and contrast-to-noise ratio were compared among the three reconstruction algorithms. Nodule sharpness was compared among the three reconstruction algorithms using the full-width at half-maximum value. Furthermore, subjective image quality analysis was performed. Results: AR50 demonstrated the highest level of noise, which was decreased by using TF + Lu and TF alone (P = 0.001). TF + Lu significantly improved nodule sharpness at all radiation doses compared to TF alone (P = 0.001). The nodule sharpness of TF + Lu was similar to that of AR50. Using TF alone resulted in the lowest nodule sharpness. Conclusion: Adding a lung enhancement filter to DLIR (TF + Lu) significantly improved the nodule sharpness compared to DLIR alone (TF). TF + Lu can be an effective reconstruction technique to enhance image quality and GGN evaluation in ultralow-dose chest CT scans.

Wine Quality Assessment Using a Decision Tree with the Features Recommended by the Sequential Forward Selection

  • Lee, Seunghan;Kang, Kyungtae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.2
    • /
    • pp.81-87
    • /
    • 2017
  • Nowadays wine is increasingly enjoyed by a wider range of consumers, and wine certification and quality assessment are key elements in supporting the wine industry to develop new technologies for both wine making and selling processes. There have been many attempts to construct a more methodical approach to the assessment of wines, but most of them rely on objective decision rather than subjective judgement. In this paper, we propose a data mining approach to predict human wine taste preferences that is based on easily available analytical tests at the certification step. We used sequential forward selection and decision tree for this purpose. Experiments with the wine quality dataset from the UC Irvine Machine Learning Repository demonstrate the accuracies of 76.7% and 78.7% for red and white wines respectively.

The Model of Motion Selection Considered with Emotion (감정을 고려한 행동선택 모델)

  • 김병관;김성주;서재용;조현찬;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1287-1290
    • /
    • 2003
  • Generally, it is known that human beings have both emotion and rationality. Especially, emotion is so subjective that human beings might act in different way for the same environment according to their own emotion. Emotion also plays very important role in communication with someone else For an agent, even though it is designed to act delicately, when it is designed without internal emotion, it can not interact dynamically just like human beings. In this paper, we suggest an agent which action is effected by not only rationality but also emotion to make it interact with human beings dynamically. It is composed of supervised learning, SOM (Self-Organizing Map) and fuzzy decision.

  • PDF

The Model with the Changing Internal Emotion

  • Ha, Sang-Hyoung;Kim, Seong-Hyun;Kim, Byeong-Kwoan;Kim, Seong-Joo;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.276-279
    • /
    • 2003
  • Generally, it is known that human beings have both emotion and rationality. Especially, emotion is so subjective that human beings might act in different way for the same environment according to their own emotion. Emotion also plays very important role in communication with someone else. For an agent, even though it is designed to act delicately, when it is designed without internal emotion, it can not interact dynamically just like human beings. In this paper, we suggest an agent which action is effected by not only rationality but also emotion to make it interact with human beings dynamically. It is composed of supervised learning, SOM (Self-Organizing Map) and fuzzy decision.

  • PDF