• Title/Summary/Keyword: Subgrade soils

Search Result 100, Processing Time 0.021 seconds

Strength and mechanical behaviour of coir reinforced lime stabilized soil

  • Sujatha, Evangelin Ramani;Geetha, A.R.;Jananee, R.;Karunya, S.R.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.627-634
    • /
    • 2018
  • Soil stabilization is an essential engineering process to enhance the geotechnical properties of soils that are not suitable for construction purposes. This study focuses on using coconut coir, a natural fibre to enhance the soil properties. Lime, an activator is added to the reinforced soil to augment its shear strength and durability. An experimental investigation was conducted to demonstrate the effect of coconut coir fibers and lime on the consistency limits, compaction characteristics, unconfined compressive strength, stress-strain behaviour, subgrade strength and durability of the treated soil. The results of the study illustrate that lime stabilization and coir reinforcement improves the unconfined compressive strength, post peak failure strength, controls crack propagation and boosts the tensile strength of the soil. Coir reinforcement provides addition contact surface, improving the soil-fibre interaction and increasing the interlocking between fibre and soil and thereby improve strength. Optimum performance of soil is observed at 1.25% coir fibre inclusion. Coir being a natural product is prone to degradation and to increase the durability of the coir reinforced soil, lime is used. Lime stabilization favourably amends the geotechnical properties of the coir fibre reinforced soil.

Investigation on economical method of foundation construction on soft soils in seismic zones: A case study in southern Iran

  • Javad Jalili;Farajdollah Askari;Ebrahim Haghshenas;Azadeh Marghaiezadeh
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.209-232
    • /
    • 2023
  • A comprehensive study was conducted to design economical foundations for a number of buildings on soft cohesive soil in the southern coastal regions of Iran. Both static and seismic loads were considered in the design process. Cyclic experiments indicated that the cohesive soil of the area has potential for softening. Consequently, the major challenge in the design stages was relatively high dimensions of settlement, under both static and seismic loadings. Routine soil-improvement methods were too costly for the vast area of the project. After detailed numerical modeling of different scenarios, we concluded that, in following a performance-based design approach and applying a special time schedule of construction, most of the settlement would dissipate during the construction of the buildings. Making the foundation as rigid as possible was another way to prevent any probable differential settlement. Stiff subgrade of stone and lime mortar under the grid foundation and a reinforced concrete slab on the foundation were considered as appropriate to this effect. In favor of an economical design, in case the design earthquake strikes the site, the estimations indicate no collapse of the buildings even if considerable uniform settlements may occur. This is a considerable alternative design to costly soil-improvement methods.

Dynamic Behavior of the Breasting Dolphin Caused by Wave Power (파력에 의한 돌핀의 거동 특성)

  • Cho, Won Chul;Yoon, Gyeong Seug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.281-287
    • /
    • 2009
  • In this study, the behavior of breasting dolphin caused by the maximum wave height in the coastal area of Incheon has been investigated. The dynamic deflection, shear stress and moment of pile are analyzed using the coefficient of horizontal subgrade reaction resulted from loading tests for different DWT (Dead Weight Tonnage). The dynamic characteristics of pile in accumulated and dredged soils show almost the same pattern. It is shown that the resistance of dolphin to external load increases as the diameter of pile increases. The bettered pile dolphin is more than 10 times stable than the vertical pile type based on the study of dynamic characteristics of dolphin.

Characteristic of Subgrade Soil using Gyratory Compactor (선회다짐기를 이용한 노상토의 다짐특성)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.571-577
    • /
    • 2018
  • A gyratory compactor was developed to reflect the field compaction roller, which is commonly used in road construction. Unlike the compaction of the proctor using a conventional impact load, the gyratory compactor simulated the field roller compaction characteristics using the compressive force by the roller weight and the shear force through the rotation of a roller. The purpose of this study was to evaluate the shear stress and density change characteristics during compaction, which are difficult to obtain in the existing compaction process of the proctor, and to utilize it as a basic data for road design. The compaction characteristics of sand and subgrade soils were also analyzed and evaluated using the gyratory compactor. The compaction characteristics obtained using the gyratory compaction are basically the number of gyrations, height of the specimen, compaction density, void ratio, degree of saturation, and shear stress. As the number of gyrations increased, the height of the specimen decreased, the compaction density increased, the void ratio decreased, the degree of saturation increased, and the shear stress tended to increase. The shear stress of the compacted specimens started at 200 kPa in the initial stage of compaction and increased to approximately 330 to 350 kPa at 50 gyrations. The compaction density, degree of saturation and shear stress tended to increase with increasing water content in the same specimens. Compaction using turning compaction has the advantage of measuring the physical properties required for road design, such as density and shear stress, so that more engineering road design will be possible if it is reflected in road design.

A design guide to minimize frost heave in unbound pavement layers over box culverts (저토피부 암거상부 포장의 도상피해 예방을 위한 단명설계)

  • Seo, Young-Guk
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • During the whole month of December in 2005, Korea experienced both heavy snowfall and freezing temperature in southeast regions, which had caused frost related damages to many pavements laid on top of box culverts. In-situ observation revealed that the formation of ice lenses in subgrade and subsequent unbound layers led to upward heaving and transverse cracks in concrete and asphalt pavements. This has affected the long-term performance of pavements, as well as has threatened drivers' safety for a while. Recently, Korea Expressway Corporation has proposed a design guide to better protect newly constructed unbound pavement layers over culverts from frost heave. A trench drainage system has been selected to effectively draw off water and to alleviate pore-water pressure in soils during the coldest season. This paper presents experimental and analytical backgrounds behind this new design guide. Soil specimens retrieved from the sites are tested to quantify clay content and to estimate the permeability of subgrade. A 2-D ground seepage analysis has been conducted to better understand the changes in pore water pressures as a function of grain size. Finally, an optimum size of trench drainage is determined based on numerical analysis and workability in the field.

  • PDF

A Study on the Experimental Relationship between KS CBR and Elastic Modulus from Consolidated Undrained Triaxial Tests (CBR과 압밀 비배수 시험에 의한 탄성계수와의 상관관계에 대한 실험적 연구)

  • Kim, Su-Il;Lee, Gwang-Ho;Gwon, Mu-Seong
    • Geotechnical Engineering
    • /
    • v.7 no.4
    • /
    • pp.25-34
    • /
    • 1991
  • In this study, relationships between CBR values tested by Korean Standards (KS CBR) and the elastic moduli from CU compression tests are developed for the subgrade soils. Triaxial compression and KS CBR tests are carried out on five types of samples from 15 points in Korean ezpressways. Triaxial compression tests are performed under 3 types of coifining pressures to generalize the CBR -elastic modulus relationship as functions of confining pressured and mean principal stresses. From the regression analyses of experimental results, equations for relationships between the KS CBR and elastic moduli of roadbed Boils are proposed. An equation for the relation- ship between the KS CBR and the maximum dry density of roadbed soil is also proposed.

  • PDF

Evaluation of correlation between Strain mudulus (Ev2) and Deformation modulus (ELFWD) Using Cyclic Plate loading Test and LFWD (소형 FWD와 반복평판재하시험에서의 변형계수(Ev2)와의 상관관계 평가)

  • Choi, Chan-Yong;Lee, Sung Hyok;Bae, Jae Hun;Park, Doo Hee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.33-41
    • /
    • 2011
  • In this study, it conducted a compaction quality control test in 29 domestic construction sites and investigated the relationship between classical method (Cyclic Plate bearing test) and LFWD test with subgrade materials which consist in sandy soil and gravelly soil. According to the test results, the most of soil types were mostly satisfied with specification criterion and gravelly soils were easily satisfied with values over 3 times greater than specification criterion. In term of the correlation relation of soil modulus with the two compaction quality control test methods, it is shown that the sandy soil types were a good correlation, while gravelly soil types with a high stiffness materials were indicated less correlation. After the compensation for stress condition, a linear regression for elastic modulus were higher correlation.

Buckling Loads of Piles with Allowance for Self-Weight (자중효과를 고려한 말뚝의 좌굴하중)

  • Lee, Joon-Kyu;Lee, Kwang-Woo;Jeon, Young-Jin;Kwon, O-Il;Choi, Yong-Hyuk;Choi, Jeong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.187-193
    • /
    • 2023
  • This paper presents the buckling behavior of a pile considering its self-weight. The differential equation and boundary conditions governing the buckling of partially embedded piles in nonhomogeneous soils are derived. The buckling load and mode shape of the pile are numerically computed by the Runge-Kutta method combined with the Regula-Falsi algorithm. The obtained numerical solutions for bucking loads agree well with the results available from the literature. Numerical examples are given to analyze the buckling load and mode shape of the piles as affected by the self-weight, embedment ratio, slenderness ratio and boundary condition of the pile as well as the aspect ratio and rigidity ratio of the subgrade reaction. It is found that the self-weight of the pile leads to the reduction of the buckling load, indicating that neglecting the effect of self-weight may overestimate the buckling load of partially embedded piles.

Characteristics of Developed Earth Pressure by Backfill Compaction (뒷채움 시공시의 다짐토압 특성)

  • 노한성
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.163-171
    • /
    • 2001
  • It is important to pay careful attention to the backfill construction for the structural integrity of concrete box culvert. To increase the structural integrity of culvert good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials. However structural distress of the culvert could be occurred due to the excessive earth pressure by great dynamic compaction load. In this study, two box culverts were constructed with change compaction materials and construction methods. Two type of on-site soils such as subbase and subgrade materials were used as backfill materials. In most case, dynamic compaction rollers with 11 to 12 ton weights were used and vibration frequency were applied from 2000 to 2500 rpm for the great compaction energy. Backfill compactions with good quality soils were carried out to examine the effect of cushions on dynamic lateral soil pressure. Expanded polystyrene (EPS) and rubber of tire were adapted as cushion materials and they are set on the culverts before backfill construction. This paper presents the main results on the characteristics of dynamic earth pressures. Test result indicates that the amounts of increased dynamic pressures are affected with backfill materials, depth of pressure cell, and compaction condition. The earth pressure during compaction can give harmful effect to box culvert because the value of dynamic earth pressure coefficient $(\DeltaK_{dyn}=\DeltaK\sigma_h\DeltaK\sigma_v)$ during compaction is greater than that of static condition. It was observed that cushion panels of EPS(t=10cm) and rubber(t=5cm) are effective to mitigate dynamic lateral pressure on the culverts.

  • PDF

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF