• Title/Summary/Keyword: Subgrade Soil

Search Result 210, Processing Time 0.024 seconds

Critical Speed Analysis of Geogrid-Reinforced Rail Roadbed (지오그리드로 보강된 철도노반의 한계속도에 관한 연구)

  • 신은철;이규진;오영인
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.534-539
    • /
    • 2001
  • This paper presents the critical speed analysis of geogrid-reinforced rail roadbeds on soft soil. A rail roadbed on soft ground must be designed to avoid intolerable stress in the underlying soil and to give sufficient support for the rail system. At high speeds, the deformation of rail systems will gain dynamic amplification, and reach excessive values as a certain speed, here termed critical speed is approached. The elastic Winkler foundation model was used to predict the critical speed of geogrid-reinforced rail roadbeds on soft soil and the model properties were determined by the in-situ cyclic plate load test. Based on the parametric study of elastic beam on Winkler foundation model, the critical speed increase with the increase of the flexural risidity of subgrade EI and the stiffness coefficient of Winkler foundation k. From the in-situ cyclic load tests and analysis of elastic beam on Winkler foundation model, the critical speed increase with increase in number of reinforced layer and non-dimensional value for depth of first geogrid layers and the thickness of reinforced rail roadbed u/d.

  • PDF

Applications of piezoelectric sensors in geotechnical engineering

  • Zeng, Xiangwu
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.237-251
    • /
    • 2006
  • Piezoelectric sensors have many applications in geotechnical engineering, especially in characterizing soils through measurement of wave velocities. Since mechanical properties of a material are closely associated with wave velocities, piezoelectric sensors provide a reliable and non-destructive method for the determination of soil properties. This paper presents results of recent research on measuring stiffness of a wide range of soils such as clay, sand, and gravel, characterizing anisotropic properties of soil induced by external loading, measuring stiffness of base and subgrade materials in the pavement, determining soil properties in a centrifuge model during the flight of a centrifuge, and understanding wave propagation in granular materials under micro-gravity environment using this technique.

Estimation of Reinforced Roadbed Thickness based on Experimental Equation (노반재료의 소성침하 예측식을 이용한 강화노반 두께 산정)

  • Shin, Eun-Chul;Yang, Hee-Saeng;Choi, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1747-1755
    • /
    • 2008
  • Design of the reinforced roadbed thickness is concerned with safe operation of trains at specified levels of speed, axle load and tonnage. There are two methods for evaluating it. One is using an experimental equation and the other is using elastic theory with considering axle load, material properties of subsoils and allowable elastic settlement. Multi-layered theory is used to determine reinforced roadbed thickness by RTRI. Although their reinforced roadbed thickness is designed with an objective of achieving a minimum standard 2.5mm of settlement on the subgrade surface, it is hardly applied to real design. Li(1994) has suggested the experimental model which design approach is to limit plastic strain and deformations for the design period. It is worth due to adopting soil equivalent number of repeated load application. Moreover, it has been a more advanced method than existing design methods because including resilient modulus of subsoil beneath track, soil deviator stress caused by train axle loads and MGT. In this paper, it is analyzed under domestic track conditions to estimate the reinforced roadbed thickness with different soil types.

  • PDF

Buckling analysis of partially embedded pile in elastic soil using differential transform method

  • Catal, Seval;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.247-268
    • /
    • 2006
  • The parts of pile, above the soil and embedded in the soil are called the first region and second region, respectively. The forth order differential equations of both region for critical buckling load of partially embedded pile with shear deformation are obtained using the small-displacement theory and Winkler hypothesis. It is assumed that the behavior of material of the pile is linear-elastic and that axial force along the pile length and modulus of subgrade reaction for the second region to be constant. Shear effect is included in the differential equations by considering shear deformation in the second derivative of the elastic curve function. Critical buckling loads of the pile are calculated for by differential transform method (DTM) and analytical method, results are given in tables and variation of critical buckling loads corresponding to relative stiffness of the pile are presented in graphs.

The Frost Heaving Susceptibility Evaluation of Subgrade Soils Using Laboratory Freezing System (실내 동상시스템을 이용한 노상토의 동상민감성 평가)

  • Shin, Eun Chul;Ryu, Byung Hyun;Park, Jeong Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.13-23
    • /
    • 2013
  • The Korean Peninsula is considered as a seasonal frozen area that is thawed in the spring and frozen in the winter. The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing tests simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the geotechnical structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In this study, ten soil samples are prepared. The basic physical property tests were performed by following the Korean Industrial Standard and the soil specimens were classified by the Unified Soil Classification System (USCS). These classified soils are used to perform the laboratory opened systems freezing test in order to determine the frost heaving characteristics of soils such as unfrozen water content, heaving amount, and freezing depth.

Approximate Prediction of Soil Deformation Caused by Repeated Loading (반목하중으로 인한 지반의 변형 예측)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.69-81
    • /
    • 1988
  • The Repeated Load Triaxial and Oedometer Tests to the weathered granite & silty clay soil have been fulfilled to investigate their dynarnic characteristics. The results obtained are summarized as follows ; 1. In the relation between the repeated triaxial compression and the oedometer test, the recoverable strain of weathered granite soil showed a tendency to decrease by the increase of the repeated loads number(N), and that of silty clay showed approximately constant values while the total strain increased continuously. 2. The changes of plastic strain was dependent to the level of deviator stress which is the most important element in the calculation of soil deformation under repeated load condition. And there was a significance of 10% between the level of stress and plastic strain. 3. When the soil was aimost dried or saturated to 100%, the deformation by the repeated loads was small. However the deformation showed peak around the saturation of 50%. 4. When the deformation was predicted by the repeated triaxial load tests of a laboratory, it is desirable to introduce the threshold stress concept in the calculation of deformation of subgrade of the pavement. 5. The improved design equation (Eq. 16) introducing the modulus of conversion(Fo), which is based on the Boussineq' s theory, is considered to be rational in the design of flexible pavement. From the above results, the deformation to the repeated traffic loads could be predicted by the repeated triaxial tests on the pavement materials or undisturbed soil layers, therefore it is think that the durable and econornic pavement could be constructed by reflecting that to the design.

  • PDF

Investigation on economical method of foundation construction on soft soils in seismic zones: A case study in southern Iran

  • Javad Jalili;Farajdollah Askari;Ebrahim Haghshenas;Azadeh Marghaiezadeh
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.209-232
    • /
    • 2023
  • A comprehensive study was conducted to design economical foundations for a number of buildings on soft cohesive soil in the southern coastal regions of Iran. Both static and seismic loads were considered in the design process. Cyclic experiments indicated that the cohesive soil of the area has potential for softening. Consequently, the major challenge in the design stages was relatively high dimensions of settlement, under both static and seismic loadings. Routine soil-improvement methods were too costly for the vast area of the project. After detailed numerical modeling of different scenarios, we concluded that, in following a performance-based design approach and applying a special time schedule of construction, most of the settlement would dissipate during the construction of the buildings. Making the foundation as rigid as possible was another way to prevent any probable differential settlement. Stiff subgrade of stone and lime mortar under the grid foundation and a reinforced concrete slab on the foundation were considered as appropriate to this effect. In favor of an economical design, in case the design earthquake strikes the site, the estimations indicate no collapse of the buildings even if considerable uniform settlements may occur. This is a considerable alternative design to costly soil-improvement methods.

Powell이s Algorithm for Back Analysis of Anchored Wall (파웰의 최적화 기법을 이용한 앵커토류벽의 역해석)

  • 김낙경;박종식;신광연
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.271-278
    • /
    • 2002
  • Recently, deep excavation for high-rise buildings occurs frequently to accommodate the rapidly increasing population in urban area. The stability of the earth retaining structures for deep excavation becomes more critical. The behavior of the earth retaining structures should be accurately predicted in a design stage, but the predicted behavior is different from the measured data due to uncertain soil properties and problems in construction. In this study the back-analysis using Powell's optimization theory was performed to match the measured deflection and results obtained from back-analysis were presented.

  • PDF

Estimation of Bearing Capacity of Subbase and Subgrade Using Pavement Dynamic Cone Penetrometer (포장동적관입시험기(PDCP)에 의한 보조기층 및 노상 지지력 측정)

  • Roo, Myung-Chan
    • International Journal of Highway Engineering
    • /
    • v.5 no.1 s.15
    • /
    • pp.35-45
    • /
    • 2003
  • This paper presents a theoretical approach for estimation of CBR-value of subbase course and subgrade using a portable pavement dynamic cone penetrometer(PDCP). The PDCP used in this paper was based on a design from South Africa and extensive studies by Kleyn(1982) and more recently by Liveneh and Ishai(1987) and Chua(1988). To date, California Bearing Ratio[CBR] value was studied mainly for application of pavement structural design. This study was initiated to develop a method of obtaining the in situ CBR-values of subbase and subgrade for the structural evaluation of pavements in the swift and inexpensive manner. PDCP tests were implemented at 20 different kinds of soil samples in the lab and test results were analysed by a theoretical approach introduced. The procedure presented provides acceptable and promising results.

  • PDF

Stiffness Modulus Comparison in Trackbed Foundation Soil

  • Kim, Daesung;Cho, Hojin;Park, Jaebeom;Lim, Yujin
    • International Journal of Railway
    • /
    • v.8 no.2
    • /
    • pp.50-54
    • /
    • 2015
  • The primary function of the trackbed in a conventional railway track system is to decrease the stresses in the subgrade to be in an acceptable level. A properly designed trackbed layer performs this task adequately. Many design procedures have used assumed and/or are based on critical stiffness values of the layers obtained mostly in the field to calculate an appropriate thickness of the sublayers of the trackbed foundation. However, those stiffness values do not consider strain levels clearly and precisely in the layers. This study proposes a method of computation of stiffness that can handle with strain level in the layers of the trackbed foundation in order to provide properly selected design values of the stiffness of the layers. The shear modulus values are dependent on shear strain level so that the strain levels generated in the subgrade in the trackbed under wheel loading and below plate of Repeated Plate Bearing Test (RPBT) are investigated by finite element analysis program ABAQUS and PLAXIS programs. The strain levels generated in the subgrade from RPBT are compared to those values from RC (Resonant Column) test after some consideration of strain levels and stress consideration. For comparison of shear modulus G obtained from RC test and stiffness moduli $E_{v2}$ obtained from RPBT in the field, many numbers of mid-size RC tests in laboratory and RPBT in field were performed extensively. It was found in this study that there is a big difference in stiffness modulus when the converted $E_{v2}$ values were compared to those values of RC test. It is verified in this study that it is necessary to use precise and increased loading steps to construct nonlinear curves from RPBT in order to get correct $E_{v2}$ values in proper strain levels.