• Title/Summary/Keyword: Subendocardium

Search Result 4, Processing Time 0.014 seconds

A Histological Study on the Heart in the False dace (Pseudorasbora parva) (참붕어(Pseudorasbora parva) 심장의 조직학적 연구)

  • Park, No Kwan;Reu, Dong Suck
    • Korean Journal of Ichthyology
    • /
    • v.27 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • The histological structure of the heart in Pseudorasbora parva was investigated by light microscope. The heart consisted of four consecutive chambers, the sinus venosus, atrium, ventricle and bulbus arteriosus. The wall of the sinus venosus was divided into endocardium, myocardium and epicardium, and the walls of the atrium and ventricle were divided into endocardium, subendocardium, myocardium, subepicardium and epicardium, and the wall of the bulbus arteriosus was divided into endocardium, subendocardium (ridge tissue), middle layer, subepicardium and epicardium. The valves were observed in the sinoatrial, artrioventricular and bulboventricular junctions. The sinus venosus wall was mostly made up of collagen. The rings of tissue were observed at the sinoatrial junction. The atrium was composed of a spongy trabeculate myocardium surrounded by an external rim of thin myocardium, and collagens were distributed in the subepicardium and trabeculae. The ventricle was a spongy myocardium with vessels in subepicardium. In the subepicardium and trabeculae of the ventricle, collagens were distributed. In the bulbus arteriosus, the diameter and length of the ridges were differed. The endocardial cells were convex and the non-clustered subendocardial cells showed irregular shapes. The cells of the middle layer were arranged into incomplete layers that showed different orientations. The subepicardium was formed by cells of different morphology. Collagens and elastins were demonstrated in the subendocardium, middle layer and subepicardium of the bulbus arteriosus. The epicardium was a single layer composed of flattened cells.

Unsolved Questions on the Anatomy of the Ventricular Conduction System

  • Oh, Il-Young;Cha, Myung-Jin;Lee, Tae-Hui;Seo, Jeong-Wook;Oh, Seil
    • Korean Circulation Journal
    • /
    • v.48 no.12
    • /
    • pp.1081-1096
    • /
    • 2018
  • We reviewed the anatomical characteristics of the conduction system in the ventricles of human and ungulate hearts and then raised some questions to be answered by clinical and anatomical studies in the future. The ventricular conduction system is a 3-dimensional structure as compared to the 2-dimensional character of the atrial conduction system. The proximal part consisting of the atrioventricular node, the bundle of His and fascicles are groups of conducting cells surrounded by fibrous connective tissue so as to insulate from the underlying myocardium. Their location and morphological characters are well established. The bundle of His is a cord like structure but the left and right fascicles are broad at the proximal and branching at the distal part. The more distal part of fascicles and Purkinje system are linear networks of conducting cells at the immediate subendocardium but the intra-mural network is detected at the inner half of the ventricular wall. The papillary muscle also harbors Purkinje system not in the deeper part. It is hard to recognize histologically in human hearts but conducting cells as well as Purkinje cells are easily recognized in ungulate hearts. Further observation on human and ungulate hearts with myocardial infarct, we could find preserved Purkinje system at the subendocardium in contrast to the damaged system at the deeper myocardium. Further studies are necessary on the anatomical characteristics of this peripheral conduction system so as to correlate the clinical data on hearts with ventricular arrhythmias.

The Local Myocardial Perfusion Rates of Right Atrial Cardioplegia in Hearts with Coronary Arterial Obstruction (관상동맥 협착을 동반한 심장에서 심근보호액 우심방 관류법의 심근 국소관류량)

  • Lee, Jae-Won;Seo, Gyeong-Pil
    • Journal of Chest Surgery
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 1992
  • The quantitatively measured local myocardial perfusion rates with microspheres are used as an objective indicator of even distribution of cardioplegic solution, and the efficacy of the retrograde right atrial route of cardioplegia is evaluated in hearts with various levels of coronary arterial obstruction. After initial antegrade cardioplegia under the median sternotomy and aortic cannulation, 60 hearts from anesthetized New Zealand white rabbits are divided in random order as normal group [ligated left main coronary artery ; MA, MR] and diagonal group [ligated proximal diagonal artery ; LA, LR]. Half of each group [N=10] are perfused with antegrade cardioplegia[A] under the pressure of 100 cmH2O and the other half with retrograde right atrial route[R] under the pressure of 60 cmH2O[St. Thomas cardioplegic solution mixed with measured amount of microspheres]. The myocardium is subdivided into segments as A[atria], RV[right ventricle]. S[septum], LV[normally perfused left ventricular free wall], ROI[ischemic myocardium of left ventricular free wall]. LV and RQI are further divided into N[subendocardium] and P[subepicardium]. The resulting local myocardial perfusion rates and N /P of each group are compared with Wilcoxon rank sum test. The weight of the hearts is 5.94$\pm$0.66g, and there are no statistically significant dif-ferences[p>0.05, ANOVA] between six compared group. The mean flow rate[F: ml /g / min] of MR group is comparable with MA group[p>0.05], but in N and L group, there are significantly depressed F with right atrial route of cardioplegia, which means elevated perfusion resistance with this route. In spite of no significant differences in delivered doses of microsphere[DEL] between compared groups[p>0.05, ANOVA], there are significantly depressed REC and NF in hearts with right atrial cardioplegia which suggests increased requirement of cardioplegic solution with this route. The interventricular septum shows poor perfusion with right atrial route of cardioplegia without obstruction of supplying coronary arteries. But, with obstruction of coronary artery supplying septum as in M group, the flow rate is superior with right atrial route of infusion. The left ventricular free wall perfusion rates of every RQI with R route are superior to that of A route[p<0.05]. But, in LV segments, there are unfavorable effects of right atrial cardioplegia in L group, although the subendocardial perfusion is well maintained in N group. The LV free wall of left main group shows depressed perfusion rates with antegrade route as compared with RQI segments of diagonal group. But, by contraries, there are increased perfusion rates and superior N /P ratio with retrograde right atrial route. It implies more effective perfusion with right atrial route of cardioplegia in more proximal coronary arterial obstruction[i.e., M group as compared with L group]. As a conclusion, all region of ischemia have superior perfusion rates with right atrial car-dioplegia as compared with antegrade route, and especially excellent results can be obtained in hearts with more proximal obstruction of coronary arteries which would otherwise result in more severe ischemic damage. But, the depressed perfusion rates of the segments with normal coronary artery in hearts with coronary arterial obstruction may be a problem of concern with right atrial cardioplegia and needs solution.

  • PDF

Effect of Reperfusion after 20 min Ligation of the Left Coronary Artery in Open-chest Bovine Heart: An Ultrastructural Study (재관류가 허혈 심근세포의 미세구조에 미치는 영향 : 재관류 손상에 관한 연구)

  • 이종욱;조대윤;손동섭;양기민;라봉진;김호덕
    • Journal of Chest Surgery
    • /
    • v.31 no.8
    • /
    • pp.739-748
    • /
    • 1998
  • Background: It has been well documented that transient occlusion of the coronary artery causes myocardial ischemia and finally cell death when ischemia is sustained for more than 20 minutes. Extensive studies have revealed that ischemic myocardium cannot recover without reperfusion by adequate restoration of blood flow, however, reperfusion can cause long-lasting cardiac dysfunction and aggravation of structural damage. The author therefore attempted to examine the effect of postischemic reperfusion on myocardial ultrastructure and to determine the rationales for recanalization therapy to salvage ischemic myocardium. Materials and methods: Young Holstein-Friesian cows(130∼140 Kg body weight; n=40) of both sexes, maintained with nutritionally balanced diet and under constant conditions, were used. The left anterior descending coronary artery(LAD) was occluded by ligation with 4-0 silk snare for 20 minutes and recanalized by release of the ligation under continuous intravenous drip anesthesia with sodium pentobarbital(0.15 mg/Kg/min). Drill biopsies of the risk area (antero-lateral wall) were performed at just on reperfusion(5 minutes), 1-, 2-, 3-, 6-, 12-hours after recanalization, and at 1-hour assist(only with mechanical respiration and fluid replacement) after 12-hour recanalization. The materials were subdivided into subepicardial and subendocardial tissues. Tissue samples were examined with a transmission electron microscope (Philips EM 300) at the accelerating voltage of 60 KeV. Results: After a 20-minute ligation of the LAD, myocytes showed slight to moderate degree of ultrastructural changes including subsarcolemmal bleb formation, loss of nuclear matrix, clumping of chromatin and margination, mitochondrial destruction, and contracture of sarcomeres. However, microvascular structures were relatively well preserved. After 1-hour reperfusion, nuclear and mitochondrial matrices reappeared and intravascular plugging by polymorphonuclear leukocytes or platelets was observed. However, nucleoli and intramitochondrial granules reappeared within 3 hours of reperfusion and a large number of myocytes were recovered progressively within 6 hours of reperfusion. Recovery was apparent in the subepicardial myocytes and there were no distinct changes in the ultrastructure except narrowed lumen of the microvessels in the later period of reperfusion. Conclusions: It is likely that the ischemic myocardium could not be salvaged without adequate restoration of coronary flow and that the microvasculature is more resistant to reversible period of ischemia than subendocardium and subepicardium. Therefore, thrombolysis and/or angioplasty may be a rational method of therapy for coronarogenic myocardial ischemia. However, it may take a relatively longer period of time to recover from ischemic insult and reperfusion injury should be considered.

  • PDF