• Title/Summary/Keyword: Subcritical, Supercritical

Search Result 67, Processing Time 0.018 seconds

Effect of Solvents as Subcritical and Supercritical Fluid on Decomposition and Extraction of Used Automotive Tire (아임계와 초임계유체로써 폐타이어 분해와 추출에 미치는 용매의 영향)

  • Kang, W.S.;Na, D.Y.;Kim, I.S.;Han, S.B.;Park, P.W.
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.239-246
    • /
    • 1999
  • Side wall samples from a used automotive tire were subjected to subcritical and supercritical decomposition and extraction with three solvents, water, 28% ammonia solution and ammonia. For 6mm cube samples the rate of supercritical extraction with water followed a first-order kinetics with an activation energy of 140 kJ/mol. Solvent power of 28% ammonia so lotion at supercritical condition was found to be higher than supercritical water at initial extraction as pressure decreased. These phenomena were considered to be an effect of ammonia involved in water.

  • PDF

Introduction and Current Status of Ultra Supercritical Circulating Fluidized Bed Boiler (초초임계 순환유동층 보일러 기술 소개 및 현황)

  • Lee, Si-Hun;Lee, Jong-Min
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.211-221
    • /
    • 2016
  • The increase of world's population and economic development are the keys drivers behind growing demand for energy. Especially the demand for electricity would eventually result in an increase of coal usage. Therefore ultra supercritical circulating fluidized bed boiler has been developed as solutions of economic eco-friendly technologies for coal and of increasing supplies of low grade fuels. Ultra supercritical circulating fluidized bed boiler has an once through type of steam cycle different from drum type in subcritical circulating fluidized bed boiler. Also, the duplication of a proven commercial module with 100-300 MWe subcritical circulating fluidized bed might be the key for design of 500~800 MWe ultra supercritical circulating fluidized bed boiler. After 2017, ultra supercritical circulating fluidized bed boiler might become standard model over subcritical circulating fluidized bed boiler. Therefore, this paper will help you to understand ultra super critical circulating fluidized bed (USC-CFB) through describing the background, status and prospect of the CFB technology.

Influence of Upstream State on the Interacting Turbulent Boundary Layer (相互作용하는 亂流 境界層에 대한 上流狀態의 影響)

  • 이덕봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.277-284
    • /
    • 1986
  • A numerical procedure (integral method) for calculating the interacting turbulent boundary layer is set up. With this method, some free interactions with various upstream conditions are simulated in order to investigate the influence of upstream state on the interacting turbulent boundary layer. The results obtained by this numerical simulation can be summarized as follows; Free interaction of upstream unstabilized (or separated) turbulent boundary layer is subcritical regardless of its external Mach number, while free interaction of upstream stabilized turbulent boundary layer has two different characteristics (subcritical, supercritical) according to the external Mach number.

Unsteady Flow Analysis through the Subcritical-Supercritical Transition Region (개수로에서의 상류-사류 천이영역에 대한 부정류 해석)

  • 한건연;박재홍;이종태
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Numerical instability of Preissmann scheme is studied for unsteady flow analysis in a natural river. The solution strategies to overcome the instability problems are presented in this paper. The main causes of numerical instability of Preissmann scheme are transition flow, abrupt change in cross section, in-appropriate roughness coefficients, time step and distance step, rapidly rising hydrograph, dry bed and so on. Transition flow model is proposed for the analysis of the transition flow which changes from subcritical to supercritical or conversely. The subcritical and supercritical reaches are groped in the channel, then appropriate boundary conditions are introduced for each reach. The transition flow analysis produces stable solutions in calculating through the various transition conditions. Verification with an actual river system is necessary in the future.

  • PDF

Three-dimensional dynamics of vortex-induced vibration of a pipe with internal flow in the subcritical and supercritical regimes

  • Duan, Jinlong;Chen, Ke;You, Yunxiang;Wang, Renfeng;Li, Jinlong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.692-710
    • /
    • 2018
  • The Three-dimensional (3-D) dynamical behaviors of a fluid-conveying pipe subjected to vortex-induced vibration are investigated with different internal flow velocity ${\nu}$. The values of the internal flow velocity are considered in both subcritical and supercritical regimes. During the study, the 3-D nonlinear equations are discretized by the Galerkin method and solved by a fourth-order Runge-Kutta method. The results indicate that for a constant internal flow velocity ${\nu}$ in the subcritical regime, the peak Cross-flow (CF) amplitude increases firstly and then decrease accompanied by amplitude jumps with the increase of the external reduced velocity. While two response bands are observed in the In-line (IL) direction. For the dynamics in the lock-in condition, 3-D periodic, quasi-periodic and chaotic vibrations are observed. A variety of CF and IL responses can be detected for different modes with the increase of ${\nu}$. For the cases studied in the supercritical regime, the dynamics shows a great diversity with that in the subcritical regime. Various dynamical responses, which include 3-D periodic, quasi-periodic as well as chaotic motions, are found while both CF and IL responses are coupled while ${\nu}$ is beyond the critical value. Besides, the responses corresponding to different couples of ${\mu}_1$ and ${\mu}_2$ are obviously distinct from each other.

Extraction of PCBs by Subcritical Water Extraction (Subcritical Water Extraction에 의한 PCBs 추출)

  • Kwak, Dong Hwan;Moon, Ji Yong;Lee, Sung In;Jeong, Gi Ho
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.511-519
    • /
    • 2000
  • Water in the supercritical state ($T{\geq}374^{\circ}C$, $p{\geq}221$ atm) is a good solvent for nonorganic pollutants, but it is extremely corrosive. Subcritical Water Extraction (SWE) is a very fast and an efficient method to extract nonpolar environmental pollutants adsorbed on the sediments and soils. Many nonpolar organic compounds are sufficiently soluble to be extracted to the water under subcritical conditions. Complete extraction of PCBs from the sediments and soils takes only a few minutes by applying SWE with the subcritical water at 50 atm and at $260^{\circ}C$.

  • PDF

Saccharification of lignocellulosics by Supercritical Water (초임계수를 이용한 목질바이오매스의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Jo, Tae-Su;Han, Gyu-Sung;Choi, Don-Ha
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.38-45
    • /
    • 2007
  • To characterize thermo-chemical feature of sugar conversion of woody biomass, poplar wood ($Populus\;alba{\times}glandulosa$) powder was treated with supercritical water system. Supercritical water treatment (SCWT) was performed for 60 seconds at different temperatures (subcritical zone 350; supercritical zone $300,\;400,\;425^{\circ}C$) under two pressures $230{\pm}10atm$ as well as $330{\pm}10atm$, respectively, using flow type system. After separation of solid residues from SCWT products, the monomeric sugars in aqueous part converted from poplar wood powder were quantitatively determined by high performance anionic exchange chromatography [HPAEC] equipped with PAD detector and Carbo Pac PA10 column. As the temperature treated increased, the degradation of poplar wood powder was enhanced and ca 83% of woody biomass was dissolved into the water at $425^{\circ}C$. However, the pressure didn't help the degradation of biomass components. At subcritical temperature range, xylose was first formed by degradation of xylan, which is main hemicellulose component in hardwood species, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical temperature. In the supercritical water system the maximum yield of monomeric sugars amounts to ca. 7.3% based on oven dried wood weight at $425^{\circ}C$.

  • PDF

The Study on the Spray Characteristics of Supercritical Spray (초임계상태 분무의 분무 특성에 관한 연구)

  • Park, C.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.8-14
    • /
    • 1999
  • The characteristics of the breakup process in supercritical spray is investigated during the injection of supercritical sulfur hexafluoride into dissimilar gases at supercritical pressures and subcritical temperature of the injected fluid. The visualization techniques used are backlighting and shadowgraph methods. The spray angles are measured and the breakup and mixing process are observed at near and supercritical conditions. The results show that spray angles are decreased with the in..ease of the ratio of density $(\frac{\rho_f}{\rho_g})$. At the supercritical temperature, the spray angles in atomization region are kept nearly constant such as the typical spray angle in gas injection. The mixing process is changed radically at the temperature where $\frac{d\rho}{dT}=\frac{1}{2}[\frac{d\rho}{dT}]_{max}$ at given pressure.

  • PDF

A numerical study of the orographic effect of the Taebak mountains on the increase of the downslope wind speed near Gangnung area (태백산맥의 지형적인 효과와 관련된 강릉 지역의 강풍 사례에 대한 수치모의 연구)

  • 이재규
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1245-1254
    • /
    • 2003
  • A numerical simulation for 11 February 1996 has been done to grasp main mechanisms of the occurrence of strong downslope winds near Gangnung area. The simulation performed by using ARPS (Advanced Regional Prediction System) showed that enhanced surface winds were not related with a reflection of vertically propagating gravity waves. Froude numbers were about 1.0, 0.4 and 0.6 for the atmosphere above Daekwanryoung and above a place located 220km upstream, and above another place located 230km downstream from the Taebak mountains, respectively. This suggested that as a subcritical flow ascended the upslope side of the Taebak mountains, Froude numbers would tend to increase according to the increase in wind speed, and near the crest the flow would become supercritical and continue to accelerate as it went down the downslope side until it was adapted back to the ambient subcritical conditions in a turbulent hydraulic jump. Simulated Froude numbers corroborated the hydraulic jump nature of the strong downslope wind. In addition, the inversion was found near the mountain top height upstream of the mountains, and it was favorable for the occurrence of strong downslope winds.