• 제목/요약/키워드: Subcarrier multiplexing

검색결과 94건 처리시간 0.017초

Performance of Time-averaging Channel Estimator for OFDM System of Terrestrial Broadcasting Channel (지상파 방송 채널에서 OFDM 시스템의 시간 평균 채널 추정기의 성능)

  • 문재경;오길남;박재홍;하영호;김수중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제10권1호
    • /
    • pp.44-53
    • /
    • 1999
  • In this paper, we propose a pilot based time-averaging channel estimation method and analyze error performances for efficient transmission of OFDM(Orthogonal Frequency Division Multiplexing) in multipath fading environment. Frequency domain channel estimations have been used in OFDM systems to compensate signal distortions due to fading on each subcarrier. The frequency domain estimation scheme uses scattered pilot to estimate channel response by simple interpolation. This implies that the estimated channel response includes signal distortions due to the noise. In this paper, we propose time-averaged channel estimation method to remove the distortion by noise. The proposed scheme can effectively remove noise components by taking time-average of the estimated channel response after estimating frequency domain channel. The computer simulations were performed to evaluate the performance of the proposed channel estimator. For the Rician channel, we compared the performance of the proposed method to that of a conventional one using channel estimation by gaussian interpolation when SER(Symbol Error Rate) = $10^{-4}$, and compared to perfect channel estimation case. The proposed method showed differences of 0.07 dB, 0.6 dB compared to perfect channel estimation and improvements of 1.7 dB, 1.9 dB for 16 QAM, 64 QAM respectively compared to conventional method.

  • PDF

Optimal Transmission Method in Cooperative Relay Communication Systems with Hierarchical Modulation (계층변조를 적용한 협력 중계 통신시스템의 최적 전송기법)

  • Jeon, Min-Cheol;Lee, Su-Kyoung;Seo, Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • 제15권2호
    • /
    • pp.224-231
    • /
    • 2010
  • In this paper, we analyze the performance of the cooperative relay communication system which uses orthogonal frequency division multiplexing(OFDM) with hierarchical subcarrier modulation. In the cooperative relay communication system, data transmission is accomplished in two time slots. In the first time slot, the source broadcasts the signal to the relay and to the destination. The relay demodulates the received signal, remodulates and forwards it to the destination in the second time slot. The source uses hierarchical modulation for subcarriers to deal with the signal-to-noise power ratio (SNR) difference in the source-relay and source-destination links. The bit error rate (BER) of the relay transmission system with hierarchical modulation depends on the hierarchical modulation parameter. First, we derive the relationship between BER and the parameter, and find the optimal parameter giving the minimum BER through computer simulations. Then, we analyze the performance of the proposed cooperative relay communication system according to the relay location. From this results, we find optimal relay location to maximize the BER performance.

Total Degradation Performance Evaluation of the Time- and Frequency-Domain Clipping in OFDM Systems (OFDM 시스템에서 시간 및 주파수 영역 클리핑의 Total Degradation 성능평가)

  • Han, Chang-Sik;Seo, Man-Jung;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제44권7호통권361호
    • /
    • pp.17-22
    • /
    • 2007
  • OFDM (Orthogonal Frequency Division Multiplexing) is a special case of multicarrier transmission, where a single data stream is transmitted over a number of lower-rate subcarrier. One of the main reasons to use OFDM is to increase robustness against frequency-selective fading or narrowband interference. Unfortunately, an OFDM signal consists of a number of independently modulated subcarriers, which can give a large PAPR (Peak-to-Average Power Ratio) when added up coherently. In this paper, we investigate the performance of a simple PAPR reduction scheme, which requires no change of a receiver structure or no additional information transmission. The approach we employed is clipping in the time and frequency domains. The time-domain clipping is carried out with a predetermined clipping level while the frequency-domain clipping is done within EVM (Error Vector Magnitude). This approach is suboptimal with lower computational complexity compared to the optimal method. This evaluation is carried out on the OFDM system with an nonlinear amplifier. The simulation results demonstrated that the PAPR reduction algorithm is one of ways to reduce the effects of the nonlinear distortion of an HPA (High Power Amplifier).

Adaptive SLM and Side Information Insertion Method (적응 SLM 방식과 부가정보 삽입기법)

  • 정락규;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제14권3호
    • /
    • pp.276-282
    • /
    • 2003
  • OFDM is effective for the high speed data transmission. However, the nonlinear distortion is a serious problem because of the high PAPR due to many subcarriers. The conventional SLM selects the OFDM signal with the lowest PAPR. In this method, OFDM data can be correctly recovered only if the side information about the phase sequence is transmitted to receiver. This paper proposes a new method of side information insertion into the conventional SLM and reduces the computational complexity by adaptive method. Performances are compared in case that three kinds of phase sequences are used for phase rotation factor. The adaptive SLM method has the same PAPR reduction as the conventional SLM method. The required BER can be guaranteed by the proposed method. When subcarrier number N=32, computational complexity is reduced to 48 %, 72 % and 51 % for the branch number U=4, 8 and 16, respectively.

Investigation of Performance Limitations of SCM/WDM Systems Using Optical DSB Modulation and 16 QAM Signals (광 이중 측파대 변조 방식과 16 QAM 신호를 이용한 부반송파/파장 분할 다중화 시스템의 성능 분석에 대한 연구)

  • Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제20권1호
    • /
    • pp.67-74
    • /
    • 2009
  • In this paper, we investigate the performance limitations of SubCarrier Multiplexed(SCM) WDM systems using optical Double-Side Band(DSB) modulated 16 QAM signals. The Bit-Error Rate(BER) performance is evaluated under various optical transmission links including the effects of the dispersion and fiber nonlinearities such as SPM(Self-Phase Modulation) and XPM(cross-phase modulation). After simulation of SCM-WDM systems, the dominant factors determining the entire system performance are appeared to be the nonlinearity of MZ(Mach-Zehnder) modulator and the SCM channel spacing. The BER performance of subcarrier channels in the higher frequencies was degraded with the large dispersion effect only, however, the performance was improved a little with a combined effect of fiber dispersion and nonlinear effect when the hish fiber launching power was applied.

Improved Soft-Decision Technique with Channel State Information in MB-OFDM System with DCM (DCM을 사용하는 MB-OFDM 시스템에서 채널 정보를 이용한 향상된 연판정 복조 기법)

  • Koo, Bon-Wook;Kang, Byung-Su;Song, Hyoung-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제32권5A호
    • /
    • pp.467-474
    • /
    • 2007
  • MB-OFDM (Multiband-orthogonal frequency division multiplexing) UWB (ultra wide band) system uses DCM (dual carrier modulation) scheme to achieve high-data rate transmission. The basic idea of DCM is that to transmit the 4 bits more reliably two 16-QAM (quadrature amplitude modulation) symbols are used and the two 16-QAM sysmbols are allocated to each subcarrier of OFDM with maximum-distance. In the case of using the DCM, if one 16-QAM symbol is broken by deep fadding channel, a receiver can detect the transmitted signal by using another 16-QAM symbol. In the conventional ML(maximum likelihood) decision scheme, since the receiver does not use the CSI (channel state information), loss in diversity can not be reduced. In this paper, we propose improved soft-decision scheme with CSI for higher performance of MB-OFDM UWB systemn.

Analysis of Smart Antenna Performance Improving the Robustness of OFDM to Rayleigh Fading (레일리 페이딩 내구성을 개선시키는 OFDM 스마트안테나의 성능 분석)

  • Hong, Young-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제48권4호
    • /
    • pp.53-60
    • /
    • 2011
  • In order to augment the robustness of OFDM system to Rayleigh multipath fading, there exist two smart antenna algorithms, namely, Pre-FFT smart antenna and Post-FFT smart antenna. After the mathematical modeling of both smart antenna algorithms, computer simulations have been carried to compare and analyze the performance of generalized eigen problem based Pre-FFT algorithm and the performance of Wiener solution based Post-FFT algorithm. It has been shown that the Post-FFT smart antenna far outperforms the Pre-FFT smart antenna due to the computational complexities. Especially it is so when the multipath signal arrives at beyond the guard interval and a rich co-channel interferer is introduced. Performance of a subcarrier clustering method proposed to lessen the computing load has been compared to that of a typical Wiener solution based Post-FFT smart antenna. Performance comparison between MRC(Maximum Ratio Combining) diversity based Post-FFT algorithm and typical Post-FFT algorithm has also been carried.

Selection of the Best Two-Hop AF Wireless Link under Multiple Antenna Schemes over a Fading Channel

  • Rahaman, Abu Sayed Md. Mostafizur;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • 제11권1호
    • /
    • pp.57-75
    • /
    • 2015
  • In evaluating the performance of a dual-hop wireless link, the effects of large and small scale fading has to be considered. To overcome this fading effect, several schemes, such as multiple-input multiple-output (MIMO) with orthogonal space time block codes (OSTBC), different combining schemes at the relay and receiving end, and orthogonal frequency division multiplexing (OFDM) are used in both the transmitting and the relay links. In this paper, we first make compare the performance of a two-hop wireless link under a different combination of space diversity in the first and second hop of the amplify-and-forward (AF) case. Our second task in this paper is to incorporate the weak signal of a direct link and then by applying the channel model of two random variables (one for a direct link and another for a relayed link) we get very impressive result at a low signal-to-noise ratio (SNR) that is comparable with other models at a higher SNR. Our third task is to bring other three schemes under a two-hop wireless link: use of transmit antenna selection (TAS) on both link with weak direct link, distributed Alamouti scheme in two-hop link and single relay antenna with OFDM subcarrier. Finally, all of the schemes mentioned above are compared to select the best possible model. The main finding of the paper is as follows: the use of MIMO on both hops but application TAS on both links with weak direct link and the full rate OFDM with the sub-carrier for an individual link provide a better result as compared to other models.

XCP-OFDM System using Cross-handed Circular Polarization (역선회 원편파를 이용한 XCP-OFDM 시스템)

  • 김병옥;하덕호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제13권3호
    • /
    • pp.316-322
    • /
    • 2002
  • The Orthogonal Frequency Division Multiplexing(OFDM) is a special case of multicarrier transmission, where a single data stream is divided into many subcarriers and transferred in a parallel way. It reduces the necessary bandwidth using the orthogonality between the subcarriers. Therefore it requires the transmission channel which has stable characteristic. When the delay spread of the channel exceed the guard interval, then the orthogonality of the subcarriers cannot maintain and as a result the system performance degrade. In this paper, the XCP-OFDM(OFDM using cross-handed Circular Polarization) system is newly proposed. This system divides the channel in order to eliminate the overlapping of subcarrier's spectrum by using cross-handed circular polarization. Therefore, the proposed XCP-OFDM system can improve the performance without increasing the guard interval. Both theoretical analysis and simulation results are described.

PAPR Reduction using Pre-emphasis and Clipping in OFDM Communication System

  • 유흥균;진병일
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제13권3호
    • /
    • pp.263-268
    • /
    • 2002
  • DFDM is a good candidate for beyond-3G high-speed wireless communication application because of the robustness to the intersymbol interference and multipath fading. However. an OFDM signal has a serious problem of the high PAPR, which results in the significant nonlinear distortion when it passes through a nonlinear high power amplifier. We propose a new PAPR reduction method using pre-emphasis and clipping. Via the proposed method, the OFDM output signal can have a low PAPR and BER improvement. Then. de-emphasis process is requisite in OFDM receiver. PAPR is reduced to about 5.7 ㏈ at the CCDF= 10$\^$-3/ when the subcarrier number is 16, QPSK modulation is used. pre-emphasis change point Is 3/9 of the peak amplitude of the IFFT output and clipping level is 11 in the IFFT output amplitude. The required SNR at BER=10$\^$-3/ the proposed system is improved by 2 dB than that of the original OFDM system.