• Title/Summary/Keyword: Subcarrier multiplexing

Search Result 94, Processing Time 0.019 seconds

A Composite LMMSE Channel Estimator for Spectrum-Efficient OFDM Transmit Diversity

  • Seo, Jeong-Wook;Jeon, Won-Gi;Paik, Jong-Ho;Jo, Min-Ho;Kim, Dong-Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.4
    • /
    • pp.209-221
    • /
    • 2008
  • In this paper, we propose a subcarrier allocation method and a composite linear minimum mean square error (LMMSE) channel estimator to increase spectrum efficiency in orthogonal frequency division multiplexing (OFDM) transmit diversity. The pilot symbols for OFDM transmit (Alamouti) diversity are exclusively allocated in two OFDM symbols in different antennas, which causes serious degradation of spectrum efficiency. To reduce the number of pilot symbols, our subcarrier allocation method uses repetition-coded data symbols, and the proposed channel estimator maintains good bit error rate (BER) performance.

Performance of MIMO-OFDMA system combining power controlling algorithm with multi-beamformer

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.69-78
    • /
    • 2022
  • In this paper, we propose the new technique adopting power control to MIMO(multi-input multi-output)-OFDMA(orthogonal frequency division multiplexing Access) system with multi-beamformer. The proposed power controlling algorithm for MIMO-OFDMA allocates the transmitting power of each subcarrier based on the CSI(channel state information) and the interference signal. CSI is feedback from base station to mobile station to decide the transmitting power of each subcarrier. Through the proposed technique, we can control iteratively the transmitting power and update the weight of beamformer simultaneously. Therefore, the SNIR of each subcarrier become to converge the target SNIR and the beam is formed toward the desired direction. And the performance of MIMO-OFDMA system with the proposed approach is very improved. The improvement in bit error rate is investigated through computer simulation of a MIMO-OFDMA system with the proposed approach.

Subcarrier and Power Allocation for Multiuser MIMO-OFDM Systems with Various Detectors

  • Mao, Jing;Chen, Chen;Bai, Lin;Xiang, Haige;Choi, Jinho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4738-4758
    • /
    • 2017
  • Resource allocation plays a crucial role in multiuser multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems to improve overall system performance. While previously proposed resource allocation algorithms are mainly designed from the point of view of the information-theoretic, we formulate the resource allocation problem as an average bit error rate (BER) minimization problem subject to a total power constraint when considering employing realistic MIMO detection techniques. Subsequently, we derive the optimal subcarrier and power allocation algorithms for three types of well-known MIMO detectors, including the maximum likelihood (ML) detector, linear detectors, and successive interference cancellation (SIC) detectors. To reduce the complexity, we also propose a two-step suboptimal algorithm that separates subcarrier and power allocation for each detector. We also analyze the diversity gain of the proposed suboptimal algorithms for various MIMO detectors. Simulation results confirm that the proposed suboptimal algorithm for each detector can achieve a comparable performance with the optimal allocation with a much lower complexity. Moreover, it is shown that the suboptimal algorithms perform better than the conventional algorithms that are known in the literature.

DQPSK OFDM-Based HF-Band Communication System with Individual Subcarrier (차동 직교 위상 편이 변조 방식의 직교주파수 분할다중 기반 단파 대역 통신 시스템)

  • Choi, Sung-Cheol;Kim, Jeong-Nyun;Park, Hyung Chul
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.800-804
    • /
    • 2018
  • This paper presents a novel HF band differential quadrature phase-shift keying (DQPSK) orthogonal frequency-division multiplexing (OFDM) communication system. The system can deliver 3.6 kbps with a bandwidth of about 3 kHz. In a digital modem, OFDM with 32-point fast Fourier transform is used. In the system, each subcarrier uses DQPSK modulation. Hence, a demodulator does not require carrier phase recovery and symbol timing recovery. And, each subcarrier employs CRC error check code individually. By using CRC code for each subcarrier, bit error caused by multipath fading can be recovered simply.

Capacity Maximizing Adaptive Subcarrier Selection in OFDM with Limited Feedback (OFDM 용량 극대화를 위한 적응 부 반송파 선택에 관한 연구)

  • Mun Cheol;Jung Chang-Kyoo;Park DongHee;Kwak Yoonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.905-911
    • /
    • 2005
  • We propose an efficient adaptive subcarrier selection scheme, in which the active subcarriers and their modulation and coding schemes (MCSs) are selected at the receiver, and subsequently conveyed to the transmitter using limited feedback We theoretically show that capacity maximization can be achieved by selecting subcarriers with highest signal-to-noise ratios (SNRs) and adapting the number of active subcarriers according to channel environments. Furthermore, an ordering based adaptive subcarrier selection algorithm is proposed to select the optimal active subcarriers with low complexity. Numerical results show that the proposed adaptive subcarrier selection scheme provides higher capacity than that obtained by water-filling approaches, even with limited feedback.

Generalized Analysis on the Combined Effect of SPM and Fiber Chromatic Dispersion on Subcarrier Multiplexed Optical Transmission Systems for RoF Applications

  • Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • We investigate theoretically the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) on multi-channel subcarrier multiplexed (SCM) optical transmission systems in terms of the detected RF carrier power and SPM-induced power gain after transmission over single-mode fiber (SMF) links. According to the calculated power gain due to the SPM effect at the transmission distance of P3dB using the detected radio-frequency (RF) carrier power after photo-detection, the power gain is significantly degraded with large optical modulation index (OMI), small SCM channel spacing, and large fiber launching power because of the increased interaction between subcarrier channels. The nonlinear phase shift due to linear and nonlinear fiber characteristics is investigated to explain these results in detail. The numerical simulation results show that the OMI per SCM channel has to be smaller than 10 % for the fiber launching power of 10 dBm to guarantee prevention of SPM-induced power gain degradation below 0.5 dB for the SCM system with the channel spacing of 100 MHz. This result is expected to be utilized for the optical transmission systems using the SCM technology in future radio-over-fiber (RoF) networks.

Feedback Scheme for STBC-Spatial Multiplexing OFDM System with outdated channel feedback (지연된 귀환 채널 정보를 가지는 STBC-공간다중화 OFDM 시스템을 위한 귀환 기법)

  • Lim Jong-Kyoung;Hwang Hyeon-Chyeol;Seo Myoung-Seok;Kwak Kyung-Sup
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.31-38
    • /
    • 2006
  • In this paper, we propose an efficient preceding scheme for STBC-Spatial Muiltiplexing OFDM systems. In MIMO systems, the precoder is designed on the assumption that feedback channel information is perfectly known to transmitter and receiver. However, feedback delay and link errors in real environment make the transmitter use the incorrect channel information and consequently cause the performance degradation. The proposed precoder is designed to compensate for the performance degradation by the diversity gain provided by STBC. At the transmitter, the precoder for each subcarrier is constructed by using the index of codebook, subcarrier correlation, and auto correlation of channel. From the simulation results, STBC-spatial multiplexing OFDM outperforms the preceded-spatial multiplexing OFDM at $SER=10^{-3}$ when the Doppler frequency is greater than 60Hz.

OFDM system using adaptive code-rate for each sub-carrier (적응부호율 기법을 부반송파별로 적용한 OFDM 시스템)

  • Park Dong chan;Kim Suk chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.200-206
    • /
    • 2005
  • Adaptive transmission techniques can improve the performance of wireless communication system by adaptively changing the transmission parameter such as modulation, code-rate, and power according to the channel state. For orthogonal frequency division multiplexing (OFDM) system, the adaptive transmission techniques can be applied to each subcarrier unit. In this paper, we consider the adaptive code-rate OFDM system in which optimal code-rate is applied to each subcarrier according to the subchannel state. Performance analysis show that $3\sim6$dB gain of SNR or up to $30\sim50\%$ increase of data rate are achieved in the condition of bit error rate $10^{-6}$.

Performance Analysis of DS-CDMA Signal through MZ Modulator in Optical SCM Signal Transmission (광 SCM 전송방식에서 MZ 변조기를 통과한 DS-CDMA 신호의 성능분석)

  • 김회준;임명섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.4
    • /
    • pp.331-341
    • /
    • 2002
  • It is expected that the SCM (Subcarrier Multiplexing) optical link system, in which a number of small scale base stations with only antenna and RF transceiver are connected to central station through optical fiber, is in demand. In order to analyze the performance of SCM optical link system fur RF signal transmission, MZ(Mach-Zehnder) modulator's transfer function is modelled as nonlinear form with the cube of input signal. And considering the multiple access interferences occurred In the demodulation of other users'CDMA signals with multipath components after passing through MZ modulator, the BER performance is analyzed.

Performance of MIMO-OFDMA Systems with Multibeamforming Algorithm (다중빔 형성기법을 가진 MIMO-OFDMA시스템 성능)

  • Kim, Chan-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.303-311
    • /
    • 2011
  • In this paper, we propose the adaptive multibeamforming algorithm to remove the same subcarrier interference and multipath signals in the MIMO(Multi-Input Multi-Out)-OFDMA (Orthogonal Frequency Division Multiplexing Access)system allocated the same subcarrier partially in order to improve spectrum efficiency. In addition to removing the interference, we can get diversity gain and combat the detriment of the performance according to time delay by the proposed approach. BER performance improvement and combating the delay spread detrimental effects of the proposed approach is investigated through computer simulation by applying it to MIMO-OFDMA.