• Title/Summary/Keyword: Subcarrier ASK

Search Result 2, Processing Time 0.015 seconds

Detection of Subcarrier-Multiplexed Optical Label Using Optical interleave (광 인터리버를 이용한 부반송파 다중화된 광 레이블 검출)

  • Shin Jong Dug;Lee Moon Hwan;Kim Boo Gyoun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1279-1284
    • /
    • 2004
  • In this paper, we propose a novel and simple optical technique for the detection of subcarrier-multiplexed(SCM) labels using optical interleavers. Optical-baseband packet signals with suppressed subcarriers appear at the through-pass port of the optical interleaver and SCM labels with suppressed optical carrier exit from the optical SCM extraction port. Since it does not require optical circulators, this structure shows less insertion loss than the previously proposed optical label detectors. The periodic nature of the interleaver transfer function makes it possible to detect multiple SCM channels simultaneously from an incoming wavelength-multiplexed signal stream. Detection of a 155-Mb/s ASK modulated 9.79-GHz subcarrier using a 10-GHz SCM optical label detector has been performed successfully and verified through optical spectra and bi t-error-rate measurements.

The Effects of Turbulent Atmosphere on Terrestrial Optical ASK Communication Systems (교란대기가 ASK 지상 광통신(光通信)시스템에 미치는 영향)

  • Hong, Kwon-Eui;Kim, June-Hwan;Jung, Jin-Ho;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.156-163
    • /
    • 1997
  • Since the wireless optical communications system transmits informations through the atmosphere, it is subject to many effects of the constituent materials of atmosphere. The turbulence effect always exists in both clear and cloudy days. It causes a beam wandering, breathing, and scintillation. These disadvantageous phenomena degrade the performance of an optical communications system. In this paper, I designed a refractive index measuring system and subcarrier ASK optical communications system. Through this system I measured refractive index in May and in August. From these measurements, the minimum value of the refractive index in these period was about ${\approx}10^{-15}[m^{-2/3}]$ at night time and the maximum value was about ${\approx}10^{-12}[m^{-2/3}]$ at day time. The refractive index structure parameter. BER(bit error rate), and the burst length were measured simultaneously in these measurements. the theoretically predicted BER and the measured values showed a good agreement.

  • PDF