• Title/Summary/Keyword: Subband IPNLMS

Search Result 2, Processing Time 0.016 seconds

Subband IPNLMS Adaptive Filter for Sparse Impulse Response Systems (성긴임펄스 응답 시스템을 위한 부밴드 IPNLMS 적응필터)

  • Sohn, Sang-Wook;Choi, Hun;Bae, Hyeon-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.423-430
    • /
    • 2011
  • In adaptive filtering, the sparseness of impulse response and input signal characteristics are very important factors of it's performance. This paper presents a subband improved proportionate normalized least square (SIPNLMS) algorithm which combines IPNLMS for impulse response sparseness and subband filtering for prewhitening the input signal. As drawing and combining the advantage of conventional approaches, the proposed algorithm, for impulse responses exhibiting high sparseness, achieve improved convergence speed and tracking ability. Simulation results, using colored signal(AR(4)) and speech input signals, show improved performance compared to fullband structure of existing methods.

Subband Sparse Adaptive Filter for Echo Cancellation in Digital Hearing Aid Vent (디지털 보청기 벤트 반향제거를 위한 부밴드 성긴 적응필터)

  • Bae, Hyeonl-Deok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.538-542
    • /
    • 2018
  • Echo generated in digital hearing aid vent give rise to user's discomfort. For cancelling feedback echo in vent, it is required to estimate vent impulse response exactly. The vent impulse response has time varying and sparse characteristics. The IPNLMS has been known a useful adaptive algorithm to estimate vent impulse response with these characteristics. In this paper, subband sparse adaptive filter which applying IPNLMS to subband hearing aid structure is proposed to cancel echo of vent by estimating sparse vent impulse response. In the propose method, the decomposition of input signal to subband can pre-whiten each subband signal, so adaptive filter convergence speed can be improved. And the poly phase component decomposition of adaptive filter increases sparsity of each components, and the better echo cancellation can be possible without additional computation. To derive coefficients update equation of the adaptive filter, by defining the cost function based weight NLMS is defined, and the coefficient update equation of each subband is derived. For verifying performances of the adaptive filter, convergence speed, and steady state error by white signal input, and echo cancelling results by real speech input are evaluated by comparing conventional adaptive filters.