• Title/Summary/Keyword: Subassemblage Test

Search Result 22, Processing Time 0.03 seconds

Cyclic-Leading Tests of RC Exterior Beam-Column Joints with Non-Seismic Detailing (비내진 상세를 가진 RC 외부접합부의 반복 횡하중 실험)

  • Cha, Byung-Gi;Ko, Dong-Woo;Woo, Sung-Woo;Lee, Han-Seon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. To do this, an exterior beam-column subassemblage was selected from a ten story RC building and six 1/3-scale specimens were manufactured with three variables; (1) with and without slab, (2) upward and downward direction of anchorage for the bottom bar in beams, and (3) with and without hoop bars in the joint region. The test results have shown that (1) the existence of slab increased the strength in positive and negative moment, 25% and 52%, respectively; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) caused the 8% reduction of strength and the early strength degradation in comparison with the case of seismic details; and (3) the existence of hoop bars in the joint region shows significant role in preventing the pull-out.t.

Seismic Behavior of Nonseismically Detailed Reinforced Concrete Beam-Column Joints (비내진 상세를 가진 RC 보-기둥 접합부의 지진 거동)

  • Woo, Sung-Woo;Lee, Han-Seon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.894-901
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. Interior and exterior beam-column subassemblages were selected from a ten-story RC building and six 1/3-scale specimens were constructed with three variables; (1) with and without slab, (2) with and without hoop bars in the joint region, (3) upward and downward direction of anchorage for the bottom bar in beams of exterior beam-column subassemblage. The test results have shown; (1) in case of interior beam-column subassemblage, there is no almost difference between nonseismic and seismic details in the strength and ductility capacity; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) in the exterior joint caused the 10%∼20% reduction of strength and 27% reduction of ductility in comparison with the case of seismic details; and the existence of hoop bars in the joint region shows no effect in shear strain.

Repair of seismically damaged RC bridge bent with ductile steel bracing

  • Bazaez, Ramiro;Dusicka, Peter
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.745-757
    • /
    • 2018
  • The inclusion of a ductile steel bracing as means of repairing an earthquake-damaged bridge bent is evaluated and experimentally assessed for the purposes of restoring the damaged bent's strength and stiffness and further improving the energy dissipation capacity. The study is focused on substandard reinforced concrete multi-column bridge bents constructed in the 1950 to mid-1970 in the United States. These types of bents have numerous deficiencies making them susceptible to seismic damage. Large-scale experiments were used on a two-column reinforced concrete bent to impose considerable damage of the bent through increasing amplitude cyclic deformations. The damaged bent was then repaired by installing a ductile fuse steel brace in the form of a buckling-restrained brace in a diagonal configuration between the columns and using post-tensioned rods to strengthen the cap beam. The brace was secured to the bent using steel gusset plate brackets and post-installed adhesive anchors. The repaired bent was then subjected to increasing amplitude cyclic deformations to reassess the bent performance. A subassemblage test of a nominally identical steel brace was also conducted in an effort to quantify and isolate the ductile fuse behavior. The experimental data from these large-scale experiments were analyzed in terms of the hysteretic response, observed damage, internal member loads, as well as the overall stiffness and energy dissipation characteristics. The results of this study demonstrated the effectiveness of utilizing ductile steel bracing for restoring the bent and preventing further damage to the columns and cap beams while also improving the stiffness and energy dissipation characteristics.

Exterior Joint Behavior of Low-Rise Reinforced Concrete Frame with Non-Seismic Detail (비내진 상세를 가진 저층 R.C조의 외부접합부 거동)

  • 김영문;기찬호;장준호;이세웅;김상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.481-486
    • /
    • 1998
  • In this paper, elastic and inelastic behavior of exterior joint of moment-resisting R.C frame with non-seismic detail subjected to reversed cyclic lateral load such as earthquake excitations was investigated. 1/2-scals subassemblage exterior beam-column joint including slab was manufactured based on similitude law. Then, pseudo static test under the displacement control was performed. The results of 1)crack pattern and failure mode, 2)degradation stiffness and strength, energy dissipation capacity from load-displacement hysteresis curve, 3)strain of steel were analysed.

  • PDF

Cyclic-loading Tests of 113-Scale R.C. Exterior Beam-column Joints With Non-Seismic Detailing (비내진 상세를 가진 1/3 축소 R.C. 외부 접합부의 반복 횡하중 실험)

  • 이한선;차병기;고동우;임동운
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.179-184
    • /
    • 2001
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with nonseismic detailing. To do this, an exterior beam-column subassemblage was selected from a 10-story RC building and 6 1/3-scale specimens were manufactured with 3 variables; ⑴ with and without slab, ⑵ upward and downward direction of anchorage for the bottom bar in beams, and ⑶ with and without hoop bars in the joint region. The test results have shown that ⑴ the existence of slab increased the strength in positive and negative moment, 25% and 62%, respectively; ⑵ the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) caused the 8% reduction of strength and the early strength degradation when compared with the case of seismic details; and ⑶ the existence of hoop bars in the joint region does not show significant difference because the size of column is much larger than that of beam.m.

  • PDF

Experimental Study on the Structural Behaviors of Reinforced Flat Plate Under Lateral Loads (수평하중하에서 철근 콘크리트 플랫 플레이트의 구조적 거동에 관한 실험적 연구)

  • 조영직;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.323-328
    • /
    • 1995
  • This paper is experimental study to define the structural behaviors of reinforced flat plate under combined gravity and lateral loads. Specific objectives of this study reported herein are : (1) To study the behavior of a typical slab-column subassemblage under lateral loading. (2) To study the effects of vertical loads on slab-column lateral load behavior. (3) To investigate the post-failure behavior of slab-column connetios. To achieve these objectives, this study includes four tests of slab-column subassemblages that were made for 1/2 scale. Finally, Test results of this study show that the level of gravity load on the flat plate is one of the most important factors determining the lateral behavior of flat plate connections.

  • PDF

Experimental study on the deformation characteristics of RC beam-column subassemblages

  • Guo, Zixiong;Yang, Yong
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.393-406
    • /
    • 2005
  • Cyclic loading tests were carried out on six half-scale reinforced concrete beam-column subassemblages designed to the current Chinese Seismic Design Code for Buildings. The deformation behavior and restoring force characteristics of the subassemblages were studied. Emphasis was directed on their seismic behavior and deformation components. Based on test data and a simplified analysis model of the global and local deformation, the contribution of the deformation components due to beam flexure, column flexure, joint shear, and slippage of longitudinal reinforcement in the joint to the global deformation of subassemblages at different displacement amplitudes of cyclic loading was investigated.

Quasi-Static Test of Precast Concrete Large Panel Subassemblage (P.C 대형판넬 부분구조물의 Quasi-Static 실험연구)

  • Choi, Jeong-Su;Lee, Han-Seon;Kim, U;Hong, Gap-Pyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.73-78
    • /
    • 1990
  • Large panel building systems are composed of vertical wall panels which support horizontal roof and floor panels to form a box like structure. The simplecity of the connections, which makes precast concrete economically viable, causes a lack of continuity in stiffness, strength and ductility. This precast concrete large panel systems typically have weak connection regions. Three types of 2-story full-scale precast concrete subassemblages were tested under reversed cyclic loading. The seismic resistance capacity and failure mode of each system are compared in connection with the characteristics of joint connection details.

  • PDF

Study on the Correlation between Analysis and Experiment for the Nonlinear Behavior of large Panel Precast Concrete Subassemblage (P.C 대형판 부분구조의 비선형 거동에 관한 실험과 해석 비교연구)

  • 김성호;이한선;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.47-54
    • /
    • 1990
  • Under external loads, large panel structures behave quite differently from monolithic wall structures, because of the distinct planes of weakness in the horizontal and vertical joints between panels. Study on the ultimate load and the failure mode of the large panel structures under extream lateral loads is therefore important. The purpose of this study is to predict the nonlinear behavior of the structure using the general purpose nonlinear computer program 'ANSR' being based on the quasi-static test results of the large panel structure(full scale in two story) and to examine the distribution and change mode of the internal forces which can not be obtained in the test.

  • PDF

Experimental Study on Buckling Restrained Knee Bracing Systems using Channel Scetions (채널 형강을 이용한 비좌굴 Knee Bracing System의 내진성능에 대한 실험적 연구)

  • Lee, Jin;Lee, Ki Hak;Lee, Han Seon;Kim, Hee Cheul;Lee, Young Hak
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.71-81
    • /
    • 2009
  • In this study, the seismic performance of the Buckling Restrained Knee Bracing (BRKB) system was evaluated through a pin-connected one-bay, one-story frame. The BRKB system developed in this study was composed of a steel plate as a load-resisting core member and two channel sections to restrain local and global buckling of the core plate. The main purpose of the BRKB system is to restrengthen/rehabilitate old low- and mid-rise RC buildings, which, it is assumed, were designed with non-seismic designs and details. The main variables for the test specimens were the size of the core plates and the stiffeners, and the condition of the end plates. The test results showed that the size of the core plate, which was the main element of the load-resisting member, was the most important parameter in achieving a ductile behavior under tension as well as compression until the maximum displacement exceeds twice the design drift limit.