• Title/Summary/Keyword: Sub-harmonic

Search Result 218, Processing Time 0.024 seconds

Switching Frequency Reduction Method for Modular Multi-level Converter Utilizing Redundancy Sub-module (예비 서브모듈을 활용한 모듈형 멀티레벨 컨버터의 스위칭 주파수 저감 기법)

  • Lee, Yoon-Seok;Yoo, Seung-Hwan;Choi, Jong-Yun;Park, Yong-Hee;Han, Byung-Moon;Yoon, Young-Doo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1640-1648
    • /
    • 2014
  • This paper proposes a switching frequency reduction method for MMC (Modular Multilevel Converter) utilizing redundancy operation of sub-module, which can offer reduction of voltage harmonics and switching loss. The feasibility of proposed method was verified through computer simulations with PSCAD/EMTDC software. Based on simulation analysis, a hardware scaled-model of 10kVA, DC-1000V MMC was designed and manufactured in the lab. Various experiments were conducted to verify the feasibility of proposed method in the actual hardware system. The hardware scaled-model can be effectively utilized for analyzing the performance of MMC according to the modulation scheme and redundancy operation.

Edge Flame Instability of CH4-Air Diffusion Flame Diluted with CO2 (이산화탄소로 희석된 메탄-공기 확산화염의 에지화염 불안정성)

  • Hwang, Dong-Jin;Kim, Jeong-Soo;Keel, Sang-In;Kim, Tae-Kwon;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.905-912
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss in addition to radiative loss could be remarkable at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this sheets flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations are categorized into three: a growing-, a harmonic- and a decaying-oscillation mode. Onset conditions of the edge flame oscillation and the relevant modes are examined with global strain rate and $CO_2$ mole fraction in fuel stream. A flame stability map based on the flame oscillation modes is also provided at low strain rate flames.

Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load

  • Mohammadian, Hossein;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.589-598
    • /
    • 2017
  • In this paper, dynamic response of the horizontal concrete beam subjected to seismic ground excitation is investigated. The structure is reinforced by $Fe_2O_3$ nanoparticles which have the magnetic properties. The hyperbolic shear deformation beam theory (HSDBT) is used for mathematical modeling of the structure. Based on the Mori-Tanaka model, the effective material properties of concrete beam is calculated considering the agglomeration of $Fe_2O_3$ nanoparticles. Applying energy method and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized for numerical solution of the motion equations. The effects of different parameters such as volume fraction and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field, boundary conditions and geometrical parameters of concrete beam are studied on the dynamic response of the structure. In order to validation of this work, an exact solution is used for comparing the numerical and analytical results. The results indicated that applying magnetic field decreases the of the structure up to 54 percent. In addition, increase too much the magnetic field (Hx>5e8 A/m) does not considerable effect on the reduction of the maximum dynamic displacement.

Theoretical Study for the Structures and Binding Energies of HOOO-(H2O)n (n=1~5) Cluster (HOOO-(H2O)n (n=1~5) 클러스터의 구조와 에너지에 대한 이론적 연구)

  • Kim, Jong-Min;Hong, Sung-Yoon;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.387-396
    • /
    • 2015
  • The DFT and ab initio calculations have been performed to elucidate hydrogen interaction of HOOO-(H2O)n (n=1~5) clusters. The optimized geometries, harmonic vibrational frequencies, and binding energies are predicted at various levels of theory. The trans conformer of HOOO monomer is predicted to be thermodynamically more stable than cis form at the CCSD(T) level of theory. For HOOO-(H2O)n clusters, the geometries are optimized at B3LYP/aug-cc-pVTZ and CAM-B3LYP/aug-cc-pVTZ levels of theory. The binding energy of HOOO-H2O cluster is predicted to be 6.05 kcal/mol at the MP2//CAM-B3LYP/ aug-cc-pVTZ level of theory after zero-point vibrational energy (ZPVE) and basis set superposition error (BSSE) correction. The average binding energy per H2O is increased according to adding a H2O moiety in HOOO-(H2O)n clusters up to 7.2 kcal/mol for n=5.

Electronic Spectroscopy and Ligand Field Analysis of trans-[CrX2([15]aneN4)]+(X=F,CI) (trans-[CrX2([15]aneN4)]+(X=F,CI)의 전자분광학과 리간드장 해석)

  • Jong-Ha Choi;In-Gyung Oh;Sang Hak Lee;Yu Chul Park
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.109-114
    • /
    • 2003
  • The electronic absorption spectra of trans-$[CrX_2([15]aneN_4)]ClO_4\;([15]aneN_4$=1,4,8,12-tetraazacyclopentadecane; X=F, Cl) complexes have been interpreted using the ligand field theory. An AOMX program is used to optimize the differences between the calculated and the observed positions for the spin-allowed transition bands. The crystal field theory(CFT) parameter is directly related to the angular overlap model(AOM), normalized spherical harmonic hamiltonians(NSH), and semiempirical parameters. The various ligand field parameters are discussed in terms of their chemical significances. According to the ligand field analysis, we can confirm that the fluoride ligand is a very strong ${\sigma}-$ and ${\pi}-$donor while the chloride has weak ${\sigma}-$ and ${\pi}-$donor properties toward chromium(III) ion.

Design and Amplitude Modulation Characteristics with Bias of Class J Power Amplifier for CSB (CSB용 J급 전력증폭기 설계 및 바이어스에 따른 진폭 변조 특성)

  • Su-kyung Kim;Kyung-Heon Koo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.849-854
    • /
    • 2023
  • In this paper, a high-efficiency power amplifier was designed by applying the operating point Class J using LDMOS(laterally diffused metal oxide semiconductor) and optimizing the output matching circuit so that the second harmonic impedance becomes the reactance impedance. The designed power amplifier has a frequency of 108 ~ 110 MHz, Characteristics of PAE(power added efficiency) is 71.5% at PSAT output (54.5 dBm), 55.5% at P1dB output (51.5 dBm), and 24.38% at 45 dBm. The CSB(carrier with sideband) amplifier, which is the reference signal in the spatial modulation method, has an operating output of 45 dBm ~ 35 dBm, and linear SDM(sum in the depth of modulation) characteristics(40% ± 0.3%) were obtained. We measure the characteristics in amplitude modulation according to the bias operating point of the power amplifier for CSB and propose the optimal operating point to obtain linear modulation characteristics.

Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods

  • Motezaker, Mohsen;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.745-753
    • /
    • 2017
  • Dynamic analysis of a concrete pipes armed with Silica ($SiO_2$) nanoparticles subjected to earthquake load is presented. The structure is modeled with first order shear deformation theory (FSDT) of cylindrical shells. Mori-Tanaka approach is applied for obtaining the equivalent material properties of the structure considering agglomeration effects. Based on energy method and Hamilton's principle, the motion equations are derived. Utilizing the harmonic differential quadrature method (HDQM) and Newmark method, the dynamic displacement of the structure is calculated for the Kobe earthquake. The effects of different parameters such as geometrical parameters of pipe, boundary conditions, $SiO_2$ volume percent and agglomeration are shown on the dynamic response of the structure. The results indicate that reinforcing the concrete pipes by $SiO_2$ nanoparticles leads to a reduction in the displacement of the structure during an earthquake.

Structure, Spectroscopic Properties and Reactions of Interstellar Molecule HC2N and Isomers :Ab initio Study

  • Park, Sung-Woo;Lee, Seong-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1553-1559
    • /
    • 2002
  • Calculations are presented for the molecule HC2N and its geometrical isomers. The structures, harmonic frequencies and dipole moments are reported. The potential energy surface of the [H,C,C,N] system is investigated in detail, and the transition states, intermediate complexes, and the energies of barrier for the isomerization and dissociation reactions are computed in order to determine the reaction paths and to estimate the stability of the isomers. The barriers of isomerization among HCCN, HCNC and HNCC are computed to be rather large and dissociations of these molecules are highly endothermic, indicating that these molecules are kinetically stable. The association reactions HC + CN→HCCN, HC + NC→HCNC, and HN + CC →HNCC are barrierless and very exothermic, suggesting that they may be considered as efficient means of producing the HCCN and the isomers in the laboratory and in interstellar space.

An Improved Phase-Shifted Carrier PWM for Modular Multilevel Converters with Redundancy Sub-Modules

  • Choi, Jong-Yun;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.473-479
    • /
    • 2016
  • In this paper, the PSC PWM method is chosen as the optimal modulation method for a 20MW VSC HVDC, with consideration of the harmonic distortion of the output voltage, the switching frequency, and the control implementation difficulty. In addition, a new PSC PWM method is proposed in order to achieve an easy application and to solve the redundant control problems encountered in the previous PSC PWM method. To verify the proposed PSC PWM method, PSCAD/EMTDC simulations for an 11-level MMC RTDS HILS test and an 11-level MMC prototype converter test were performed. As can be seen from the results of these tests, the proposed PSC PWM method shows good results in an 11-level MMC with redundant sub-modules.

Analysis on behavior of MLCC considering material properties for BaTiO3 (Barium Titanate 의 재료 특성을 고려한 MLCC 의 거동 분석)

  • Park, No-Cheol;Jeong, Sanggeuk;Ko, Byeong-Han;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.69-71
    • /
    • 2014
  • MLCCs are used broadly in electronic industry like smart phone and TV. Although they are fabricated in small size and have high capacitance, there are acoustic noise problems to reduce comfort of user. Acoustic noise results from linear piezoelectricity and nonlinear electrostriction of $BaTiO_3$ in MLCC and there are some researches on MLCC vibration under AC electric field. When only AC electric field without DC bias is applied to MLCC, fundamental frequency response is affected by piezoelectricity and second-harmonic frequency response shows electrostrictive vibration. In this study we get vibration shape of MLCC under AC electric field for each frequency and analysis on the mechanism of MLCC vibration affected by piezoelectricity and electrostriction.

  • PDF