• Title/Summary/Keyword: Sub-domain Method

Search Result 282, Processing Time 0.025 seconds

Study on the Structural System Condensation using Multi-level Sub-structuring Scheme in Large-scale Problems (대형 시스템에서의 다단계 부분구조 기법을 이용한 시스템 축소기법에 관한 연구)

  • Baek, Sung-Min;Kim, Hyun-Gi;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.356-361
    • /
    • 2008
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the previous study, we proposed a two-level condensation scheme (TLCS) for the construction of a reduced system. And we have improved previous TLCS with combination of the iterated improved reduced system method (IIRS) to increase accuracy of the higher modes intermediate range. In this study, we apply previous improved TLCS to multi-level sub-structuring scheme. In the first step, the global system is recursively partitioned into a hierarchy of sub-domain. In second step, each uncoupled sub-domain is condensed by the improved TLCS. After assembly process of each reduced sub-eigenvalue problem, eigen-solution is calculated by Lanczos method (ARPACK). Finally, Numerical examples demonstrate performance of proposed method.

  • PDF

A Simplified Time Domain Channel Tracking Scheme in OFDM Systems with Null Sub-Carriers (Null 부반송파를 갖는 OFDM 시스템에서 단순화된 시간영역 채널 추적 방식)

  • Jeon, Hyoung-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.418-424
    • /
    • 2007
  • This paper proposes a scheme to track channel response in OFDM systems with null sub-carriers. The proposed channel tracking scheme estimates the channel response first in the frequency domain by using the decision directed data. The time domain channel estimation is then performed to remove additive white Gaussian noise (AWGN) components further. Due to the channel estimation in the frequency domain, no inverse matrix calculation is required in the time domain channel estimation. Computational reduction in the proposed method is about 93%, compared with the conventional time domain channel estimation method. Mean square error (MSE) and bit error rate (BER) performances are evaluated by using computer simulation. The proposed method shows the same performance as that of the conventional time domain channel estimation even though the significant computational reduction.

Structural Design Optimization on the Reduced System Constructed from Large-Scaled Problem (축소시스템과 영역분할 기법과의 연동을 통한 대형구조물 설계 기법 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1070-1077
    • /
    • 2006
  • In the present study, sizing and shape optimizations are performed based on the reduced system of large-scaled problem. In the analysis part to achieve efficiency and reliability of computation, two-level condensation scheme is applied. In the construction of reduced system of large scaled problems, it is much more efficient to use sub-domain method. Thus, in the present paper, two-level reduction method combined with sub-domain method is employed. Once the reduced system is constructed, it is straightforward to obtain design sensitivities from the analysis results of the reduced system We use semi-analytic method to obtain design sensitivities. Performance of the efficiency and reliability of the present reduction method in the structural optimization problem is demonstrated through the numerical examples. The present framework of reduction method should serve as a fast and reliable design tool in analysis and design of large-scaled dynamic problems.

FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses

  • Soares, Delfim Jr.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • In this work, the iterative coupling of finite element and boundary element methods for the investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the common interface between the two sub-domains is performed through an iterative procedure until convergence is achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular, a more efficient and stable performance of the coupling procedure is achieved by a special formulation that allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

Medical Image Compression in the Wavelet Transform Domain (Wavelet 변환 영역에서 의료영상압축)

  • 이상복;신승수
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.4
    • /
    • pp.23-29
    • /
    • 2002
  • This paper suggest the image compression that is needed to process PACS in medical information system. The image decoding method is used Linear-predictor and Lloyd-Max quantizer(quantization) in the Wavelet transform domain. Wavelet Transform Method is processed the multi-resolution by dividing image into 10 sub-bands of 3 levels. Low frequency domain that is sensitive to human visual characteristic is encoded by DPCM which is lossless encoding methods, and Lloyed-Max quantizer, the optimal quantizer for reducing ringing and aliasing in the image of inter sub-band, is used in the remaining high frequency domain of sub-band. The examination verifies that decompressed images are superior by the result that PSNR is 28.53dB on the input image, 512$\times$152 abdominal CT image and Chest image.

  • PDF

Combination Treatment of Nd:YAG Picosecond-domain Laser and Fractional CO2 Laser for Contracted Neck Scar with Hyperpigmentation

  • Choi, Woo Jung;Park, Eun Soo;Tak, Min Sung;Kang, Sang Gue
    • Medical Lasers
    • /
    • v.10 no.1
    • /
    • pp.52-54
    • /
    • 2021
  • There is growing interest in minimizing postoperative scarring after a thyroidectomy. Among the many treatment types, laser therapy, especially picosecond-domain laser therapy, is accepted as a standard method. In the present case, a patient with a pigmented, contracted scar was treated using the combination of a picosecond laser and ablative fractional (AF) CO2 laser. After 15 sessions of 1,064-nm picosecond with micro lens array (MLA) and AF CO2 laser application, the patient showed significant improvement in their pigmented lesions and scar contracture with no noticeable side effects for 16 months. These results suggest that a combination of picosecond laser with MLA and AF CO2 laser can treat pigmented, contracted scars safely and effectively.

Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure

  • Soares, Delfim Jr.;Goncalves, Kleber A.;de Faria Telles, Jose Claudio
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.263-277
    • /
    • 2015
  • This paper presents a coupled FEM-BEM strategy for the numerical analysis of elastodynamic problems where infinite-domain models and complex heterogeneous media are involved, rendering a configuration in which neither the Finite Element Method (FEM) nor the Boundary Element Method (BEM) is most appropriate for the numerical analysis. In this case, the coupling of these methodologies is recommended, allowing exploring their respective advantages. Here, frequency domain analyses are focused and an iterative FEM-BEM coupling technique is considered. In this iterative coupling, each sub-domain of the model is solved separately, and the variables at the common interfaces are iteratively updated, until convergence is achieved. A relaxation parameter is introduced into the coupling algorithm and an expression for its optimal value is deduced. The iterative FEM-BEM coupling technique allows independent discretizations to be efficiently employed for both finite and boundary element methods, without any requirement of matching nodes at the common interfaces. In addition, it leads to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-domain, may be employed), which do not need to be treated (inverted, triangularized etc.) at each iterative step, providing an accurate and efficient methodology.

Image Restoration by Lifting-Based Wavelet Domain E-Median Filter

  • Koc, Sema;Ercelebi, Ergun
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • In this paper, we propose a method of applying a lifting-based wavelet domain e-median filter (LBWDEMF) for image restoration. LBWDEMF helps in reducing the number of computations. An e-median filter is a type of modified median filter that processes each pixel of the output of a standard median filter in a binary manner, keeping the output of the median filter unchanged or replacing it with the original pixel value. Binary decision-making is controlled by comparing the absolute difference of the median filter output and the original image to a preset threshold. In addition, the advantage of LBWDEMF is that probabilities of encountering root images are spread over sub-band images, and therefore the e-median filter is unlikely to encounter root images at an early stage of iterations and generates a better result as iteration increases. The proposed method transforms an image into the wavelet domain using lifting-based wavelet filters, then applies an e-median filter in the wavelet domain, transforms the result into the spatial domain, and finally goes through one spatial domain e-median filter to produce the final restored image. Moreover, in order to validate the effectiveness of the proposed method we compare the result obtained using the proposed method to those using a spatial domain median filter (SDMF), spatial domain e-median filter (SDEMF), and wavelet thresholding method. Experimental results show that the proposed method is superior to SDMF, SDEMF, and wavelet thresholding in terms of image restoration.

  • PDF

Fatigue Damage Estimation of Wide Band Spectrum Considering Various Artificial Neural Networks (다양한 인공 신경망을 적용한 광대역 스펙트럼의 피로손상 예측)

  • Park, Jun-Bum;Kim, Sung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.341-348
    • /
    • 2016
  • The fatigue damage caused by wide band loadings has generally been predicted using fatigue damage models in the frequency domain rather than a rain-flow counting method in the time domain because of its computation cost. This study showed that these fatigue damage models can be simplified in the form of normalized fatigue damage as a function of the S-N curve slope and bandwidth parameters. Based on numerical simulations of various wide band spectra, it was found that fatigue damage models in the form of normalized fatigue damage with one S-N curve slope and two bandwidth parameters( α1 , α2 ) provided less reasonable fatigue damage. Therefore, an additional bandwidth parameter needs to be considered based on a sensitivity study using various neural networks, which proved that α1-5 would be the dominant factor of a fatigue damage model as an additional bandwidth parameter.

FINITE ELEMENT ANALYSIS FOR DISCONTINUOUS MAPPED HEXA MESH MODEL WITH IMPROVED MOVING LEAST SQUARES SCHEME

  • Tezuka, Akira;Oishi, Chihiro;Asano, Naoki
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.373-379
    • /
    • 2001
  • There is a big issue to generate 3D hexahedral finite element (FE) model, since a process to divide the whole domain into several simple-shaped sub-domains is required before generating a continuous mesh with mapped mesh generators. In general, it is nearly impossible to set up proper division numbers interactively to keep mesh connectivity between sub-domains on a complicated arbitrary-shaped domain. If mesh continuity between sub-domains is not required in an analysis, this complicated process can be omitted. Element-free Galerkin method (EFGM) can accept discontinuous meshes, which only requires nodal information. However it is difficult to choose a reasonable influenced domain in moving least squares scheme with non-uniformly distributed nodes in discontinuous FE models. A new FE scheme fur discontinuous mesh is proposed in this paper by applying improved EFGM with some modification to derive FE approximated function in discontinuous parts. Its validity is evaluated on linear elastic problems.

  • PDF