• 제목/요약/키워드: Sub-cooled/Saturated

검색결과 8건 처리시간 0.02초

6.6 ㎸-200A급 HTS 한류기 DC Reactor용 과냉질소 냉각시스템의 개발 (Development of cooling system with sub-cooled nitrogen for DC Reactor of 6.6 ㎸-200A class HTS fault current limiter)

  • 김형진;권기범;강형구;배덕권;안민철;정은수;장호명;고태국
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.171-175
    • /
    • 2003
  • The sub-cooled nitrogen cooling system at 65 K with GM cryo-cooler is developed for cooling down the DC reactor of 6.6 ㎸-200 A class HTS Fault Current Limiter(SFCL). The sub-cooled nitrogen cooling is more economic than saturated nitrogen cooling, because the length of HTS wire is reduced in the same capacity, as well as, more stable. The cooling system with the GM cryo-cooler installed on the cryostat is not only compact but also efficient for energy saving. In the nitrogen vessel, after evacuating with vacuum pump to saturated nitrogen at 65 K, sub-cooled nitrogen at 65 K is made by putting in gas helium to 1 atm. During the short circuit test occurring the fault current of 1000 A, the sub-cooled nitrogen cooled DC reactor for SFCL is kept the state of sub-cooled nitrogen at 65 K.

  • PDF

An Overall Investigation of Break Simulators for LOCA Scenarios in Integral Effect Tests

  • Kim, Yeon-Sik;Park, Hyun-Sik
    • 에너지공학
    • /
    • 제23권4호
    • /
    • pp.73-88
    • /
    • 2014
  • Various studies on the critical flow models for sub-cooled and/or saturated water were reviewed, especially on Fauske, Moody, and Henry for basic theoretical models; Zaloudek for insight into physical phenomena for a critical flow in an orifice type flow path; Sozzi & Sutherland for a critical flow test of saturated and sub-cooled water at high pressure for orifice and nozzles; and a Marviken test on a full-scale critical flow test. In addition, critical flow tests of sub-cooled water for the break simulators in integral effect test (IET) facilities were also investigated, and a hybrid concept using Moody's and Fauske's models was considered by the authors. In the comparison of the models for the selected test data, discussions of the effect of the diameters, predictions of the critical flow models, and design aspects of break simulator for SBLOCA scenarios in the IET facilities were presented. In the effect of diameter on the critical flow rate with respect to all dimensional scales, it was concluded that the effect of diameter was found irrespective of diameter sizes. In addition, the diameter effect on slip ratio affecting the critical flow rate was suggested. From a comparison of the critical flow models and selected test data, the Henry-Fauske model of the MARS-KS code was found to be the best model predicting the critical flow rate for the selected test data under study.

6.6kV/200A급 유도형 한류기용 과냉질소 냉각시스템의 특성 (Characteristic of sub-cooled nitrogen cryogenic system for 6.6kV/200A Inductive Superconducting Fault Current Limiter)

  • 박동근;강형구;윤경용;주민석;김태중;고태국
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.234-236
    • /
    • 2003
  • The cryogenic system for inductive superconducting fault current limiter (SFCL) has been investigated recently. In this investigation, the sub-cooled nitrogen cryogenic system was adopted to enhance the performance of DC reactor for 6.6㎸/200A inductive SFCL. In sub-cooled nitrogen state at 64K, the critical current value and the thermal conductivity are larger than those of saturated nitrogen state at 77K and the electrical insulation capacitance should be remarkably enhanced. The solenoid type of 84mH superconducting DC reactor was fabricated and cooled down to 64K by using sub-cooled cooling method with GM-cryocooler and rotary pump. The fabrication techniques of cryogenic system and some experimental results such as cooling down characteristic are introduced in this study. Moreover, the sub-cooled nitrogen cryogenic system was detailedly introduced in this paper.

  • PDF

Fault Current Limiting Characteristic of Non-inductively Wound HTS Magnets in Sub-cooled $LN_2$ Cooling System

  • Park Dong-Keun;Ahn Min-Cheol;Yang Seong-Eun;Lee Chan-Joo;Seok Bok-Yeol;Yoon Yong-Soo;Ko Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권2호
    • /
    • pp.29-32
    • /
    • 2006
  • An advanced superconducting fault current limiter (SFCL) using $high-T_c$ superconducting (HTS) wire has been developed. The SFCL has a non-inductively wound magnet for reducing loss in normal state. Two types of non-inductively wound magnets, the solenoid type and the pancake type, were designed and manufactured by using Bi-2223 wire in this research. Short-circuit tests of the magnets were performed in sub-cooled $LN_2$ cooling system of 65 K. The magnets are thermally more stable and have a higher critical current in 65 K sub-cooled $LN_2$ cooling system than in 77 K saturated one. Because the resistivity of matrix at 65 K is lower than the resistivity at 77 K, the magnets generate a small resistance to reduce the fault current when the quench occurs. The magnets could limit the fault current to low current level with such a small resistance. The current limiting characteristic of the magnets was analyzed from the test result. The solenoid type was wound in parallel to make it non-inductive. The pancake type was also connected in parallel to be compared with the solenoid type in the same condition. The solenoid type was found to have a good thermal stability compared with the pancake type. It also had as large resistance as the pancake type to limit the fault current in sub-cooled $LN_2$ cooling system.

HCCR breeding blankets optimization by changing neutronic constrictions

  • Zadfathollah Seighalani, R.;Sedaghatizade, M.;Sadeghi, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2564-2569
    • /
    • 2021
  • The neutronic analysis of Helium Cooled Ceramic Reflector (HCCR) breeding blankets has been performed using the 3D Monte Carlo code MCNPX and ENDF nuclear data library. This study aims to reduce 6Li percentage in the breeder zones as much as possible ensuring tritium self-sufficiency. This work is devoted to investigating the effect of 6Li percentage on the HCCR breeding blanket's neutronic parameters, such as neutron flux and spectrum, Tritium Breeding Ratio (TBR), nuclear power density, and energy multiplication factor. In the ceramic breeders at the saturated thickness, increasing the enrichment of 6Li reduces its share in the tritium production. Therefore, ceramic breeders typically use lower enriched Li from 30% to 60%. The investigation of neutronic analysis in the suggested geometry shows that using 60% 6Li in Li2TiO3 can yield acceptable TBR and energy deposition results, which would be economically feasible.

초음파 진동이 비등열전달 과정에 미치는 영향에 관한 실험적 연구 (Experimental Study on Effect of Boiling Heat Transfer by Ultrasonic Vibration)

  • 나기대;오율권;양호동
    • 에너지공학
    • /
    • 제15권1호
    • /
    • pp.35-44
    • /
    • 2006
  • 본 연구에서는 비등열전달 과정동안, 초음파 진동이 열전달 과정에 미치는 영향에 관하여 실험적으로 조사해 보았다. 실험은 등온가열조건하에서, 40kHz의 초음파 진동을 가진한 경우와 가진하지 않은 경우로 나누어 비등과정동안의 온도분포를 측정하였고, 대류상태와 과냉상태 그리고 포화상태에서의 열전달계수를 측정하여 열전달 향상율을 비교하여 보았다. 또한, 하이드로폰을 이용하여 초음파 가진시 매질내에 발생하는 음압분포를 측정하고 열전달 향상율과 비교하여 보았다. 실험결과, 비등열전달 과정에 초음파 진동을 가진한 경우, 가진하지 않은 경우와 비교하였을 때 열전달계수가 높게 나타나는 것을 확인하였으며, 특히 대류상태에서 열전달계수가 급격하게 증가하였다. 또한, 초음파 진동의 가진으로 인해 형성되는 음압은 진동자가 부착된 지점에서 주위보다 상대적으로 높게 형성되는 것을 실험적으로 확인하였으며, 초음파 진동으로 인해 형성된 높은 음압이 열전달 향상율에 영향을 미치는 원인의 하나로 작용하고 있음을 알 수 있었다. 결국, 초음파 진동에 의해 매질내에 발생하는 음압은 열전달 향상과 밀접한 관련이 있다고 사료된다.

이산화탄소 하이드레이트 슬러리의 생성 및 수송기술개발 (Development of Formation and Transportation Techniques for CO2-Hydrate Slurry)

  • ;윤린
    • 설비공학논문집
    • /
    • 제29권7호
    • /
    • pp.341-349
    • /
    • 2017
  • Formation and transportation of $CO_2$-hydrate slurry was conducted by circulating saturated water with $CO_2$ through a double-tube type heat exchanger which was cooled down by brine. The inner diameter and circulation length of the heat exchanger were 1 inch and 20 m, respectively. Water in tank was supersaturated by injected $CO_2$ and the operation pressure was maintained at 3,000 to 4,000 kPa with fluid-temperature of less than $9^{\circ}C$. $CO_2$ hydrate mass fraction was calculated based on density of $CO_2$-hydrate slurry mixture. Results showed that the $CO_2$-hydrate slurry could be circulated without blockage for 1 hr. Circulation status of the $CO_2$-hydrate slurry was also visualized.

Modeling of deposition and erosion of CRUD on fuel surfaces under sub-cooled nucleate boiling in PWR

  • Seungjin Seo;Nakkyu Chae;Samuel Park;Richard I. Foster;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2591-2603
    • /
    • 2023
  • Simulating the Corrosion-Related Unidentified Deposit (CRUD) on the surface of fuel assemblies is necessary to predict the axial offset anomaly and the localized corrosion induced by the CRUD during the operation of nuclear power plants. A new CRUD model was developed to predict the formation of the CRUD deposits, considering the deposition and erosion mechanisms. The heat transfer and capillary flow within the CRUD were also considered to evaluate the boiling amount within the CRUD layer. This model predicted a CRUD deposit thickness of 44 ㎛ during a one-cycle operation of the Seabrook nuclear power plant. The CRUD deposition tended to accelerate and decelerate during the simulation, by being related to boiling mechanism on the deposits surface. Additionally, during a three-cycle operation corresponding to the refueling period, the CRUD deposition was saturated at a thickness of 80 ㎛, which was in good agreement with the suggested thickness for CRUD buildupin pressurized water reactors. Surface boiling on the thin CRUD deposits enhanced the acceleration of the deposition, even when the wick boiling properties were not favorable for CRUD deposition. To ensure the certainty of the simulation results, sensitivity analyses were conducted for the porosity, chimney density, and the constants employed in the proposed model of the CRUD.